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MATH 652: Optimization II
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Part 16

Linear programming 1

minimize  cT x
                 Ax   ≥   b
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Linear Programming

Definition: A linear program is an optimization problem in which:
● The objective function is linear (affine):

(Note: The constant d does not affect where the optimum lies.)

● All equality and inequality constraints are linear (affine):

or

Note: An equality constraint is equivalent to two inequality 
constraints:

f x=c
T
xd ,            c , x∈ℝ

n

ai
T
x=b i ,            ai∈ℝ

n
, bi∈ℝ

ai
T
x≥b i ,            ai∈ℝ

n
, bi∈ℝ

ai
T x≥bi ,

ai
T x≤bi .
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Linear Programming

Definition: A linear program is an optimization problem that can be 
written equivalently as

min x∈ℝn   c
T
x

              Ax≥b
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Linear Programming: Example 1

Production planning: 
A company has products i=1...N. Sales price: c

i
. 

Product i needs a
ji
 units of resource j=1...M. Availability: b

j
 units.

Question: How much of each product should the company produce?

Mathematical formulation:
● x

i
: Items of product i to be produced

● Revenue:

● We need                              units of resource j

● Optimization problem:

                                                          or
                                                    equivalently

∑i=1

P
c i x i  = cT x

max x∈ℝn   c
T
x

              a j
T x≤b j ,      j=1. ..M

∑i=1

P

a ji x i=a j
T x

min
x∈ℝn   −c

T x

              −A x≥−b
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Linear Programming: Example 2

Future capacity planning: A power company foresees a demand of d
t
 

gigawatt-hours in year t=2019..2075. Existing capacity: e
t
.

Choice: Extend capacity using coal (price: c
t
 per gigawatt-hour when 

built in year t) or wind (cost: w
t
). Minimize costs.

Constraints: (i) Coal power plants last for 25 years, wind plants for 30. 
(ii) Meet foreseen demand.

Mathematical formulation:
● x

t
,y

t
: capacity of coal and wind power built in year t

● Total cost:

● Available capacity in year t:

∑t=2010

2075

ct x t+wt y t

e t+∑s=max{2019, t−25}

t

xs+∑s=max{2019, t−30}

t

ys
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Linear Programming: Example 2

Mathematical formulation:

Reformulate in standard form by using
X=(x

2019
, x

2020
, ..., x

2075
,    y

2019
, y

2020
, ..., y

2075
)T

C=(c
2019

, c
2020

, ..., c
2075

,   w
2019

, w
2020

, ..., w
2075

)T

b=(d
2019

-e
2019

,  d
2020

-e
2020

,  ...,  d
2075

-e
2075

)T

min x t , yt
  ∑t=2019

2075

c t xt+w t y t

             ∑s=max{2019,t−25}

t
xs+∑s=max{2019,t−30}

t
ys  ≥d t−e t ,        t=2019. .2075

             x t≥0,                                                                             t=2019. .2075
             yt≥0,                                                                            t=2019. .2075

min x∈ℝ82   C
T
X

              A X≥b
              X≥0



8

Linear Programming: Example 3

Scheduling of resources to tasks: Hospital needs to schedule nurses to 
night shifts. Nurses work 5 days in a row on a 7-day schedule. On the 
ith day of the week, history shows that d

i
 nurses are needed (demand).

Question: How many nurses are needed in total, and on what schedules 
should they be?

Mathematical formulation:
● x

i
: number of nurses starting their 5-day run on day i

● Total number of nurses needed:

● On day 1, the number of nurses available is

● On day 2, the number of nurses available is

∑i=1

7
xi

x4x5x6x7x1

x5x6x7x1x2
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Linear Programming: Example 3

Mathematical formulation:

Note: More realistic formulations would also include preferences by 
employees, conflicts, tied schedules (e.g. advisor/trainee), 
contingencies/on-call duties, etc.

min
x∈ℝ

7   ∑i=1

7
xi

              ∑k=i−4

i
xi  mod 7  ≥  di ,        i=1...7

              x i                      ≥  0,         i=1. ..7
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Linear Programming: Example 3

Mathematical formulation:

However: In reality, we also need to consider that the number of 
nurses, x

i
, must be an integer.

The problem is therefore not a common linear programming (LP) 
problem, but an integer linear programming (ILP) problem. 

ILPs are much more difficult problems to solve!

min
x∈ℝ

7   ∑i=1

7
xi

              ∑k=i−4

i
xi  mod 7  ≥  di ,        i=1...7

              x i                      ≥  0,         i=1. ..7
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Linear Programming: Example 4

Network flow: Food needs to get from a set of locations (“sources”) of 
capacity s

i
 to a different set of locations (“sinks”) of demand d

i
. Sources 

have d
i
=0, sinks s

i
=0. Transportation happens on a network between 

nodes (i,j) of bandwidth b
ij
 and transporting one unit of food on this 

link costs c
ij
.

How to transport food most cost effective so that demand is met?
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Linear Programming: Example 4

Mathematical formulation:
● x

ij
: amount of food transported on edge (i,j) of the network, i.e. from 

i to j

● Need to satisfy bandwidth constraints for each link:

(Note: If a link does not exist, then b
ij
=0. Links are directed!)

● Sources can not deliver more than they have:

● Sinks need to get their demand satisfied:

x ij  ≤  bij

∑i
x ij  ≥  d j          at sinks

∑ j
x ij  ≤ si        at sources
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Linear Programming: Example 4

Mathematical formulation:

Note: Such problems appear in a wide variety of transportation 
problems. Examples: Shipping of books from amazon.com's 
distribution centers to customers; supplying goods from King Sooper's 
distribution centers to stores; etc.

A more complex version of the network flow problem would include a 
variety of products, rather than just one, or that origin and destination 
of each product matter (e.g. letters).

min
x∈ℝ n×n   ∑i , j

c ij x ij
              x ij         ≤  bij ,
              x ij         ≥  0,

              ∑j
x ij   ≤  si ,

              ∑
i
xij   ≥  d j .
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Linear Programming: Example 5

Network capacity: Data packets need to get from node A to node B 
along a network with given bandwidth b

ij 
on each edge.

What is the maximal data rate that can be transported on this network 
from A to B?

National LambdaRail network, part of NSF's TeraGrid.
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Linear Programming: Example 5

Mathematical formulation:
● x

ij
: data rate transported on edge (i,j) of the network, i.e. from i to j

● Bandwidth constraints for each link:

(Note: If a link does not exist, then b
ij
=0. Links are directed!)

● At i=A, we have for the net inbound flux:

● At i=B, we have:

● At all other nodes, data is just transported through:

x ij  ≤  bij

∑k
x ki−∑ j

x ij  =  0

∑k
xkA−∑ j

xAj  = −s

∑k
xkB−∑ j

xBj  = s
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Linear Programming: Example 5

Mathematical formulation:

Note: Extensions might consider that there can be multiple sources but 
only one destination (e.g. Google data centers, Netflix servers), or that 
multiple products need to be provided.

Network capacity problems are ubiquitous in transportation planning 
such as highway networks, airplane scheduling, etc.

min
x∈ℝ

n×n
, s∈ℝ

  s
                      x ij         ≤ bij ,
                      x ij         ≥ 0,

                      ∑k
xki−∑j

x ij   =  s −iA iB 
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Linear Programming: Example 6

Convex optimization of a nonlinear function: Consider finding the 
minimum of a function f(x) that may be nonlinear. If it is at least 
convex, we may be able to approximate it with piecewise linears.
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Linear Programming: Example 6

Mathematical formulation:
● Original problem:

● Equivalent formulation of this is:

● An approximation to this can be found if we choose points ξ
i
 and 

solve instead

Note: The solution of this problem could serve as a good starting point 
for the full nonlinear minimization. Constraints can easily be 
incorporated if they are linear, or a linearized as well.

min
x∈ℝ

n   f x

min
x∈ℝ

n
, z∈ℝ

  z

                    z  ≥  f x 

min x∈ℝ
n , z∈ℝ

  z

                    z  ≥  f i∇ f i
T
x−i ,        ∀ i
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Linear Programming: Example 7

Data fitting: Find a linear relationship that best fits a set of data points.
This can be formulated in a variety of ways:

The first one is a smooth, convex
problem.The other two are non-smooth but convex problems that can 
be reformulated as linear programming problems.

mina , b∈ℝ   
1
2
∑

i
 y i−at ib

2

min
a , b∈ℝ

  ∑i
∣y i−at ib∣

mina , b∈ℝ   maxi ∣y i−at ib∣
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Linear Programming: Example 7

Mathematical formulation:
● Original problem:

● Equivalent but still non-smooth formulation:

● Equivalent but smooth formulation:

Note: A similar techniques also works for the maximum-residual 
problem.

min
a , b∈ℝ

  ∑i=1

N

∣y i−at ib∣

min
a , b∈ℝ , s∈ℝ

n   ∑i=1

N

si
                       si=∣y i−at ib∣,         i=1...N

min
a , b∈ℝ , s∈ℝ

n   ∑i=1

N

si
                       si≥ y i−at ib ,            i=1...N
                       si≥− y i−at ib ,         i=1...N
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Formulating linear programs

Theorem:
Any linear optimization problem that is given in the form

can be restated in the form

where

min x∈ℝn   c
T x

              A1x≥b1

              A2x=b2

              A3 x≤b3

min x∈ℝn   c
T
x

              Ax≥b

A=
A1

A2

−A2

−A3

,      b=
b1

b2

−b2

−b3

 ,
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Formulating linear programs

Theorem:
Any linear optimization problem that is given in the form

is equivalent to a problem written in standard form of linear 
programming:

where

Note: Standard form is more convenient for algorithm development 
and will therefore frequently be used.

min x∈ℝn   c
T
x

              Ax≥b

A=A   −A   −I  ,      x=
x+

x-

s  ,      c=
c

−c
0 

min
x∈ℝ2n m   c

T
x

                 A x=b
                 x≥0
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The geometry of feasible sets

Definition: A set S is called convex if

       A convex set S.                               A nonconvex set S.

x , y∈S     implies     x1− y∈S   ∀0≤≤1.



24

Lemma: The set of points that satisfy a single constraint,

is a half-space and is convex.

Lemma: The intersection of finitely many convex sets is convex.

Theorem: The set of points described by the constraints,

is convex.

{x∈ℝ
n :   a i

T x≥b i}

{x∈ℝ
n :   Ax≥b}

The geometry of feasible sets
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Example: The set of points described by four constraints.

{x∈ℝ
2 :   ai

T x≥bi , i=1}

The geometry of feasible sets
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Example: The set of points described by four constraints.

{x∈ℝ
2 :   ai

T x≥bi , i=1,2}

The geometry of feasible sets
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Example: The set of points described by four constraints.

Note: The matrix

does now no longer
have full row rank!

A=
a1
T

a2
T

a3
T∈ℝ

3×2

{x∈ℝ
2 :   ai

T x≥bi , i=1. .3}

The geometry of feasible sets
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Example: The set of points described by four constraints.

Note: The feasible
set is a compact

subset of R2.

{x∈ℝ
2 :   ai

T x≥bi , i=1. .4}

The geometry of feasible sets
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The geometry of feasible sets – Pathologies 1

Example: The set of points described by four constraints.

Note: The feasible
set is empty. The

constraints are
said to be
mutually

incompatible!

{x∈ℝ
2 :   ai

T x≥bi , i=1. .4}
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The geometry of feasible sets – Pathologies 2

Example: The set of points described by four constraints.

Note: The feasible
set is unbounded
and consequently

not compact.

{x∈ℝ
2 :   ai

T x≥bi , i=1. .4}
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The geometry of feasible sets – Pathologies 3

Example: The set of points described by five constraints.

Note: Constraints 4
and 5 are linearly
dependent but not

mutually exclusive.
Nothing bad happens.

{x∈ℝ
2 :   ai

T x≥bi , i=1. .5}
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The geometry of feasible sets – Pathologies 4

Example: The set of points described by five constraints.

Note: Constraint 5 is not
parallel to any of the

other constraints
but will never be

active. Nothing
bad happens.

{x∈ℝ
2 :   ai

T x≥bi , i=1. .5}



33

The geometry of feasible sets – 3 and more dimensions

Feasible sets with three or more variables must still be convex. They 
are, in particular, convex polyhedra:

               A convex polyhedron                  A nonconvex polyhedron
              (an icosidodecahedron)                           (a stellation)
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Example: The function  f(x) = x
1
+x

2
 = cTx.

The geometry of the objective function

f x=−2
−1

0
1

2

c
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Example: The function  f(x) = x
1
+x

2
 = cTx.

This is the
location
within the feasible
set with the smallest
f(x), i.e. the point
of solution.

The geometry of linear problems

f x=−2
−1

0
1

2

c
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Example: The function  f(x) = x
1
+x

2
 = cTx.

The geometry of such problem suggests an algorithm: Start at one of 
the vertices and keep trying to find an adjacent vertex with smaller f(x). 
This is, in essence, Dantzig's simplex algorithm.

The geometry of linear problems

f x=−2
−1

0
1

2

c



37

Example: The function  f(x) = x
1
+x

2
 = cTx.

This problem is unbounded,
i.e. there is a direction in
which the feasible set is

unbounded and f(x) is
unbounded from below.

The geometry of linear problems

f x=−2
−1

0
1

2

c



38

If   (i) the feasible set is bounded, and  (ii) the feasible set is not empty:

   A single vertex is the unique            All points along a whole edge are
                  solution.                          solutions. In particular, the vertices
                                                                   of the edge are solutions.

Possible solutions of linear programs

f x=−2
−1

0
1

2

c

f x=−2
−1

0
1

2

c
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The geometry of linear programs in standard form

Recall that any linear optimization problem that is given in the form

is equivalent to a problem written in standard form:

where

Note: If                                             . While the original matrix may not 
have fewer rows than columns, the second definitely does.

min x∈ℝn   c
T
x

              Ax≥b

A=A   −A   −I  ,      x=
x+

x-

s  ,      c=
c

−c
0 

min
x∈ℝ2n m   c

T
x

                 A x=b
                 x≥0

A∈ℝ
m×n
,   then A∈ℝ

m×2nm 
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The geometry of linear programs in standard form

Problems written in standard form:

definitely have a matrix with fewer rows (m) than columns (2n+m).

Corollary: The feasible set is the intersection of a hyperplane (with 
dimension equal to at least  (2n+m)-m=2n) with the first quadrant/ 
octant/etc.

In particular, the feasible set is also a polygon, just like before, except 
that this polygon now lies in a lower-dimensional subspace defined by 
the constraint.

min
x∈ℝ2n m   c

T
x

                 A x=b
                 x≥0
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The geometry of linear programs in standard form

Example: Consider

The standard form of this problem is:

min
x={x + , x -, s}∈ℝ3   x

+
−x-

                          x+
−x-

−s=1
                          x             ≥0

min x∈ℝ   x
              x≥1

x+
−x-

−s=1  in the area x+
≥0, x-

≥0 x+
−x-

−s=1  in the area x≥0
i.e. the feasible set
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The geometry of linear programs in standard form

Example: Consider

The standard form of this problem is:

Note: The solution to this problem is not unique – any set of variables

produces the optimal value 1 of the objective function. By 
unsubstituting variables we get the unique solution of the original 
problem:

The value of the objective function is of course the same.

min
x={x + , x -, s}∈ℝ3   x

+
−x-

                          x+
−x-

−s=1
                          x             ≥0

min x∈ℝ   x
              x≥1

x+
=1x- ,   x-

≥0,   s=0

x  = x+
−x-  =  1
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One of the following cases must hold:

● A vertex of the feasible region is the unique solution

● All points of an edge or face of the feasible region are solutions; in 
particular, the vertices of the edge or face are solutions

● The feasible set is empty and there are no solutions

● The feasible set is unbounded and the objective function is 
unbounded from below in one of the directions in which the feasible 
set is unbounded; the problem then has no bounded solution.

In other words:

If bounded solutions exists, 
the set of solutions must include at least one vertex!

   A single vertex is the unique            All points along a whole edge are
                  solution.                          solutions. In particular, the vertices
                                                                   of the edge are solutions.

Possible solutions of linear programs
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Definition:
We call a point x* a local solution of

if there exists a neighborhood U of x* so that

Definition:
We call a point x* a global solution of

if 

Possible solutions of linear programs

min
x∈ℝ

n   f x
              g x=0,  hx ≥0

f x*≤f  x   ∀ x∈U∩{x :g x=0, hx ≥0}

min
x∈ℝ

n   f x
              g x=0,  hx ≥0

f x*≤f  x   ∀ x∈{x :g x=0, hx ≥0}
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Definition:
We call a function  f(x) convex if

We call it concave if

Corollary:
Any linear (affine) function is both convex and concave.

Remark: In fact, affine functions are the only functions that are both 
convex and concave.

Possible solutions of linear programs

f  x1− y  ≤  f x 1− f  y   ∀ x , y∈D⊂ℝ
n
,∈[0,1]

f  x1− y  ≥  f x 1− f  y   ∀ x , y∈D⊂ℝ
n
,∈[0,1]
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Theorem: 
Any local solution of a linear program is also a global solution.

(Proof: Use convexity of the feasible set and of the objective function.)

Theorem:
The set of all global solutions of a linear program is convex (and 
consequently also singly connected).

(Proof: Use convexity of the feasible set and linearity of the objective function.)

Theorem:
Among all solutions of a linear program is always at least one vertex of 
the feasible set.

(Proof: Later, need to define precisely what a vertex is.)

Possible solutions of linear programs
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Definition: 
We call the set of points                            a polyhedron. 
If n=2, we also call it a polygon.

Corollary:
The set of points                                      is also a polyhedron.

Polyhedra in a formal language

{x∈ℝ
n : Ax≥b}

{x∈ℝ
n : Ax=b , x≥0}
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Definition: 
Let              be a polyhedron. We call              an extreme point if

          An extreme point.                      Two points that are not extreme.

Polyhedra in a formal language

P⊂ℝ
n

there are no x , y∈P , x≠p , y≠p   so that  p= x1− y  for any 0≤≤1.

p∈P

pp

p

p
x

x

y

y
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Definition: 
Let              be a polyhedron. We call              a vertex of P if there is a 
vector c so that

          An extreme point.                      Two points that are not extreme.

Polyhedra in a formal language

P⊂ℝ
n

cT p  cT x    ∀ x∈P , x≠ p.

p∈P

pp

p

p
c
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Definition: 
Let              be a polyhedron defined by

The set of active or binding constraints at a arbitrary point              is 
defined as

Note: If                 then

because all equality constraints must be active.

Polyhedra in a formal language

P⊂ℝ
n

P={x∈ℝ
n :ai

T x≥bi  for i=1...m1 ,   ai
T x=bi  for i=m11...m2}

p∈P

I p={i∈[1,m1]:ai
T p=bi} ∪ {i∈[m11,m2] :a i

T p=b i}    ⊂   [1,m2]

p∈ℝ
n

I p={i∈[1,m1]:ai
T p=bi} ∪ [m11,m2]
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Example: 

Tentative conclusion: At a vertex of a polyhedron in n space 
dimension, n constraints are active, i.e.  #I(p)=n.

Polyhedra in a formal language

pp
1

pp
2

pp
3

I p1 ={1,2}

I p1 ={1}

I p1 ={}
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But careful: 

  A vertex with n+1 active constraints.                  Not a vertex, but n 
                                                                              constraints are active.

Polyhedra in a formal language

pp
1

p

I p1 ={1,2,5}

pp
2

I p2={1,5}
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Definition: 
Let              be a polyhedron defined by

We call                a basic solution of P if:

● all equality constraints are satisfied at p

● the set

contains n vectors that are linearly independent.

Polyhedra in a formal language

P⊂ℝ
n

P={x∈ℝ
n :ai

T x≥bi  for i=1...m1 ,   ai
T x=bi  for i=m11...m2}

{a i : i∈I  p}

p∈ℝ
n
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Note: 
The condition that 

contains n vectors that are linearly independent is equivalent to saying 
that

● The vectors a
i
 form a basis of Rn. This is why these points are called 

“basic” (i.e. “basic” as in “basis”, not “fundamental”).

● If we group the vectors and corresponding right hand sides into a 
linear system

then the solution will be unique and will equal p. This is why these 
points are called “solutions”.

Polyhedra in a formal language

{a i : i∈I  p}

ai
T
x=b i ,       i∈ I  p
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Definition: 
Let              be a polyhedron defined by

We call                a degenerate basic solution of P if:

● all equality constraints are satisfied at p

● the set

contains n vectors that are linearly independent

● this set has more than n elements, i.e. more than n constraints are 
active at p.

Polyhedra in a formal language

P⊂ℝ
n

P={x∈ℝ
n :ai

T x≥bi  for i=1...m1 ,   ai
T x=bi  for i=m11...m2}

{a i : i∈I  p}

p∈ℝ
n
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Definition:
A basic solution p is called a feasible basic solution if in addition to the 
equality and active inequality constraints also the inactive inequality 
constraints are satisfied.

The only five
feasible basic
solutions

Some of the
non-feasible 
basic solutions

Polyhedra in a formal language
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Theorem:
A feasible basic solution is a vertex is an extreme point.

In other words: Let p be a point in a non-empty polyhedron P. Then it 
is either none or all of the following:

● p is a feasible basic solution

● p is a vertex of P

● p is an extreme point of P

Polyhedra in a formal language
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Theorem:
A polyhedron can only have finitely many vertices.

Note: In fact, a polyhedron

can have at most

basic solutions. However, this can be a very large number!

Example: The unit cube in n dimensions has 2n≈100.3n vertices.

Polyhedra in a formal language

P={x∈ℝ
n :ai

T x≥bi  for i=1...m' ,   ai
T x=bi  for i=m'1...m}

mn = m!
m−n ! n!
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Note: A polyhedron

can have at most

basic solutions. However, not all of them are feasible. In fact, at every 
feasible basic solution, the m-m' equality constraints need to all be 
active, so that there can be at most

feasible basic solutions (vertices).

Polyhedra in a formal language

P={x∈ℝ
n :ai

T x≥bi  for i=1...m' ,   ai
T x=bi  for i=m'1...m}

mn = m!
m−n ! n!

 m'
n−m−m' =

m' !
n−mm'  !m'−n−m−m'  !

=
m' !

n−m−m'  !m−n !



60

Theorem:
If the feasible set of a linear program is non-empty and has at least 
one vertex, then exactly one of the following is true:

● The minimum of the objective function over the feasible set is 
–∞, or

● among all solutions of the linear program is always at least one 
vertex of the feasible set.

Possible solutions of linear programs
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