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Part 15

Global optimization

minimize  f x
                 g i x    =   0,       i=1,... , ne
                 hix    ≥   0,       i=1,. .. , n i
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Motivation

What should we do when asked to find the (global) minimum 
of functions like this:

f  x= 1
20

 x1
2x2

2cos  x1cos  x2
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A naïve sampling approach

Naïve approach: Sample at M-by-M points and choose the 
one with the smallest value.

Alternatively: Start Newton's method at each of these points to 
get higher accuracy.

Problem: If we have n variables, then we would have to start 
at Mn points. This becomes prohibitive for large n!
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Monte Carlo sampling

A better strategy (“Monte Carlo” sampling):

● Start with a feasible point

● For k=0,1,2,...:
- Choose a trial point

- If                            then                 [accept the sample]

- Else:
. draw a random number  s  in  [0,1]
. if 

  then
                       [accept the sample]

  else
   [reject the sample]

x0

xt

f  x t≤ f xk  xk1=x t

exp [− f  xt − f xk T ] ≥ s

xk1=x t

xk1=xk
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Monte Carlo sampling

Example: The first 200 sample points
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Monte Carlo sampling

Example: The first 10,000 sample points
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Monte Carlo sampling

Example: The first 100,000 sample points
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Monte Carlo sampling

Example: Locations and values of the first 105 sample points
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Monte Carlo sampling

Example: Values of the first 100,000 sample points

Note: The exact minimal value is -1.1032... . In the first 
100,000 samples, we have 24 with values  f(x)<-1.103.
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Monte Carlo sampling

How to choose the constant T:

● If T is chosen too small, then the condition 

will lead to frequent rejections of sample points for which 
f(x) increases. 
Consequently, we will get stuck in local minima for long 
periods of time before we accept a sequence of steps that 
gets “us over the hump”.

● On the other hand, if T is chosen too large, then we will 
accept nearly every sample, irrespective of f(x

t 
).

Consequently, we will perform a random walk that is no 
more efficient than uniform sampling.

exp [− f  xt − f xk T ] ≥ s ,            s∈U [0,1]
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Monte Carlo sampling

Example: First 100,000 samples, T=0.1
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Monte Carlo sampling

Example: First 100,000 samples, T=1
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Monte Carlo sampling

Example: First 100,000 samples, T=10
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Monte Carlo sampling

Strategy: Choose T large enough that there is a reasonable 
probability to get out of local minima; but small enough that this 
doesn't happen too often.

Example: For                                                                   

the difference in function value between local minima and 
saddle points is around 2. We want to choose T so that

is true maybe 10% of the time.

This is the case for T=0.87.

f  x= 1
20

 x1
2
x2

2
cos  x1cos  x2

exp [− f
T ] ≥ s ,            s∈U [0,1 ]
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Monte Carlo sampling

How to choose the next sample x
t
:

● If x
t
 is chosen independently of x

k
 then we just sample the 

entire domain, without exploring areas where f(x) is small.
Consequently, we should choose x

t
 “close” to  x

k
. 

● If we choose x
t
 too close to x

k
 we will have a hard time 

exploring a significant part of the feasible region.

● If we choose x
t
 in an area around  x

k
 that is too large, then 

we don't adequately explore areas where f(x) is small.

Common strategy: Choose

where σ  is a fraction of the diameter of the domain or the 
distance between local minima.

xt=x k y ,         y∈N 0, I  or U [−1,1]
n

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Monte Carlo sampling

Example: First 100,000 samples, T=1, σ=0.05
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Monte Carlo sampling

Example: First 100,000 samples, T=1, σ=0.25



472               Wolfgang Bangerth

Monte Carlo sampling

Example: First 100,000 samples, T=1, σ=1
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Monte Carlo sampling

Example: First 100,000 samples, T=1, σ=4
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Monte Carlo sampling with constraints

Inequality constraints: 
● For simple inequality constraints, modify sample 

generation strategy to never generate infeasible trial 
samples

● For complex inequality constraints, always reject samples 
for which

hi x t0       for at least one i
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Monte Carlo sampling with constraints

Inequality constraints: 
● For simple inequality constraints, modify the sample 

generation strategy to never generate infeasible trial 
samples

● For complex inequality constraints, always reject samples:
- If                            then

- Else:
. draw a random number  s  in  [0,1]
. if 

  then

  else

where

Q xt ≤Q xk  xk1=x t

exp [−Q xt −Q xk

T ] ≥ s

xk1=x t

xk1=xk

Q x=∞  if at least one hi  x0,           Q x =f  xotherwise
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Monte Carlo sampling with constraints

Equality constraints: 
● Generate only samples that satisfy equality constraints

● If we have only linear equality constraints of the form

then one way to guarantee this is to generate samples 
using

where Z is the null space matrix of A, i.e. AZ=0.

g x=Ax−b=0

xt=x k Z y ,            y∈ℝ
n−ne ,    y=N 0, I orU [−1,1]

n−ne
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Monte Carlo sampling

Theorem:
Let A be a subset of the feasible region. Under certain 
conditions on the sample generation strategy, then as              
we have 

That is: Every region A will be adequately sampled over time. 
Areas around the global minimum will be better sampled than 
other regions.

In particular,

number of samples x k∈ A   ∝   ∫A
e

−
f (x)
T dx

k∞

fraction of samples x k∈A   =   1
C∫A

e
−
f (x)
T dx+ O( 1

√N )
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Monte Carlo sampling

Remark:
Monte Carlo sampling appears to be a strategy that bounces 
around randomly, only taking into account the values (not the 
derivatives) of f(x).

However, that is not so if sample generation strategy and T 
are chosen carefully: Then we choose a new sample 
moderately close to the previous one, and we always accept it 
if f(x) is reduced, whereas we only sometimes accept it if f(x) 
is increased by this step.

In other words: On average we still move in the direction of 
steepest descent!
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Monte Carlo sampling

Remark:
Monte Carlo sampling appears to be a strategy that bounces 
around randomly, only taking into account the values (not the 
derivatives) of f(x).

However, that is not so – because it compares function 
values.

That said: One can accelerate the Monte Carlo method by 
choosing samples from a distribution that is biased towards 
the negative gradient direction if the gradient is cheap to 
compute.

Such methods are sometimes called Langevin samplers.
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Simulated Annealing

Motivation:
Particles in a gas, or atoms in a crystal have an energy that is 
on average in equilibrium with the rest of the system. At any 
given time, however, its energy may be higher or lower.

In particular, the probability that its energy is E is

Where k
B
 is the Boltzmann constant. Likewise, probability that 

a particle can overcome an energy barrier of height  ΔE  is

This is exactly the Monte Carlo transition probability if we 
identify

PE   ∝   e
−
E
kBT

PEE E   ∝   min {1, e
−

 E
kBT }   =  {

1 if  E≤0

e
−

 E
k BT  if  E0}

E = f kB
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Simulated Annealing

Motivation:
In other words, Monte Carlo sampling is analogous to 
watching particles bounce around in a potential  f(x)  when 
driven by a gas at constant temperature.

On the other hand, we know that if we slowly reduce the 
temperature of a system, it will end up in the ground state with 
very high probability. For example, slowly reducing the 
temperature of a melt results in a perfect crystal. (On the other 
hand, reducing the temperature too quickly results in a glass.)

The Simulated Annealing algorithm uses this analogy by using 
the modified transition probability

exp [− f  xt − f xk T k ] ≥ s ,        s∈U [0,1 ],      T k0  as k∞
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Simulated Annealing

Example: First 100,000 samples,  σ=0.25

T=1 T k=
1

110−4 k
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Simulated Annealing

Example: First 100,000 samples,  σ=0.25

  24 samples with f(x)<-1.103         192 samples with f(x)<-1.103

T=1 T k=
1

110−4 k
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Simulated Annealing

Convergence: First 1,500 samples, 

(Green line indicates the lowest function value found so far)

T=1 T k=
1

10.005 k

f x =∑i=1

2 1
20
x i

2
cos x i
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Simulated Annealing

Convergence: First 10,000 samples, 

(Green line indicates the lowest function value found so far)

T=1 T k=
1

10.0005k

f x=∑
i=1

10 1
20
x i

2
cos xi
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Simulated Annealing

Discussion:
Simulated Annealing is often more efficient in finding global 
minima because it initially explores the energy landscape at 
large, and later on explores the areas of low energy in greater 
detail.

On the other hand, there is now another knob to play with 
(namely how we reduce the temperature):

● If the temperature is reduced too fast, we may get stuck in 
local minima (the “glass” state)

● If the temperature is not reduced fast enough, the 
algorithm is no better than Monte Carlo sampling and may 
require many many samples.
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Very Fast Simulated Annealing (VFSA)

A further refinement:
In Very Fast Simulated Annealing we not only reduce 
temperature over time, but also reduce the search radius of 
our sample generation strategy, i.e. we compute

and let

Like reducing the temperature, this ensures that we sample 
the vicinity of minima better and better over time.

Remark: To guarantee that the algorithm can reach any point 
in the search domain, we need to choose       so that

xt=x kk y ,         y∈N 0, I  or U [−1,1]
n


k0

k

∑k=0

∞

k=∞
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Genetic Algorithms (GA)

An entirely different idea:
Choose a set (“population”) of N points (“individuals”)  
P

0
={x

1
,...x

N
}

For k=0,1,2,... (“generations”):
● Copy those N

f
<N individuals in P

k
 with the smallest  f(x)  (i.e. 

the “fittest individuals”) into P
k+1

● While #P
k+1

<N:

- select two individuals (“parents”) x
a
,x

b
 from

among the first N
f 
 individuals in  P

k+1
 with probabilities

       proportional to 
- create a new point  x

new
  from x

a
,x

b
 (“mating”)

- perform some random changes on x
new

 (“mutation”)

- add it to P
k+1

e− f x i/T
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Genetic Algorithms (GA)

Example: Populations at k=0,1,2,5,10,20, N=500, N
s
=2/3 N
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Genetic Algorithms (GA)

Convergence: Values of the N samples for all generations k

f x=∑
i=1

10 1
20
x i

2
cos xif x=∑i=1

2 1
20
x i

2
cos xi
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Genetic Algorithms (GA)

Mating: 
● Mating is meant to produce new individuals that share the 

traits of the two parents
● If the variable x encodes real values, then mating could just 

take the mean value of the parents:

● For more general properties (paths through cities, which of M 
objects to put where in a suitcase, …) we have to encode x in 
a binary string. Mating may then select bits (or bit 
sequences) randomly from each of the parents

● There is a huge variety of encoding and selection strategies 
in the literature.

xnew=
xaxb

2
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Genetic Algorithms (GA)

Mutation:
● Mutations are meant to introduce an element of randomness 

into the process, to explore search directions that aren't 
represented yet in the population

● If the variable x represents real values, we can just add a 
small random value to x to simulate mutations

● For more general properties, mutations can be introduced by 
randomly flipping individual bits or bit sequences in the 
encoded properties

● There is a huge variety of mutation strategies in the literature.

xnew=
xaxb

2
 y ,      y∈ℝ

n
,   y=N 0, I 
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Part 15

Summary of 
global optimization methods

minimize  f x
                 g i x    =   0,       i=1,... , ne
                 hix    ≥   0,       i=1,. .. , n i
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Summary of methods

● Global optimization problems with many minima are 
difficult because of the curse of dimensionality: the 
number of places where a minimum could be becomes 
very large if the number of dimensions becomes large

● There is a large zoo of methods for these kinds of 
problems

● Most algorithms are stochastic to sample feasible region

● Algorithms also work for non-smooth problems

● Most methods are not very effective (if one counts number 
of function evaluations) in return for the ability to get out of 
local minima

● Global optimization algorithms should never be used 
whenever we know that the problem has only a small 
number of minima and/or is smooth and convex
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