Part 1

Examples of optimization problems
What is an optimization problem?

Mathematically speaking:

Let X be a Banach space (e.g., \mathbb{R}^n); let

- $f : X \to \mathbb{R} \cup \{+\infty\}$
- $g : X \to \mathbb{R}^{ne}$
- $h : X \to \mathbb{R}^{ni}$

be functions on X, find $x \in X$ so that

\[
\begin{align*}
 f(x) &\to \min! \\
 g(x) &= 0 \\
 h(x) &\geq 0
\end{align*}
\]

Questions: Under what conditions on X, f, g, h can we guarantee that (i) there is a solution; (ii) the solution is unique; (iii) the solution is stable.
What is an optimization problem?

In practice:

- $x=\{u,y\}$ is a set of design and auxiliary variables that completely describe a physical, chemical, economical model;

- $f(x)$ is an objective function with which we measure how good a design is;

- $g(x)$ describes relationships that have to be met exactly (for example the relationship between y and u);

- $h(x)$ describes conditions that must not be exceeded.

Then find me that x for which

$$f(x) \rightarrow \text{min!}$$

$$g(x) = 0$$

$$h(x) \geq 0$$

Question: How do I find this x?
What is an optimization problem?

Optimization problems are often subdivided into classes:

- Linear vs. Nonlinear
- Convex vs. Nonconvex
- Unconstrained vs. Constrained
- Smooth vs. Nonsmooth
- With derivatives vs. Derivativefree
- Continuous vs. Discrete
- Algebraic vs. ODE/PDE

Depending on which class an actual problem falls into, there are different classes of algorithms.
Examples

Linear and nonlinear functions $f(x)$
on a domain bounded by linear inequalities
Examples

Strictly convex, convex, and nonconvex functions $f(x)$
Examples

Another non-convex function with many (local) optima. We may want to find the one *global* optimum.
Examples

Optima in the presence of (nonsmooth) constraints.
Examples

Smooth and non-smooth nonlinear functions.
Applications: The drag coefficient of a car

Mathematical description:
\[x = \{ u, y \} \]
\[u \] are the design parameters (e.g. the shape of the car)
\[y \] is the flow field around the car
\[f(x): \] the drag force that results from the flow field
\[g(x) = y - q(u) = 0 \]

constraints that come from the fact that there is a flow field \[y = q(u) \] for each design. \[y \] may, for example, satisfy the Navier-Stokes equations
Applications: The drag coefficient of a car

Inequality constraints:

\[(\text{expected sales price} - \text{profit margin}) - \text{cost}(u) \geq 0\]

\[\text{volume}(u) - \text{volume}(\text{me, my wife, and her bags}) \geq 0\]

\[\text{material stiffness} \times \text{safety factor} - \max(\text{forces exerted by } y \text{ on the frame}) \geq 0\]

\[\text{legal margins}(u) \geq 0\]
Applications: The drag coefficient of a car

Analysis:

linearity:
- $f(x)$ may be linear
- $g(x)$ is certainly nonlinear (Navier-Stokes equations)
- $h(x)$ may be nonlinear

convexity: ??

constrained: yes

smooth:
- $f(x)$ yes
- $g(x)$ yes
- $h(x)$ some yes, some no

derivatives: available, but probably hard to compute in practice

continuous: yes, not discrete

ODE/PDE: yes, not just algebraic
Remark:

In the formulation as shown, the objective function was of the form

\[f(x) = c_d(y) \]

In practice, one often is willing to trade efficiency for cost, i.e. we are willing to accept a slightly higher drag coefficient if the cost is smaller. This leads to objective functions of the form

\[f(x) = c_d(y) + a \text{ cost}(u) \]

or

\[f(x) = c_d(y) + a[\text{cost}(u)]^2 \]
Applications: Optimal oil production strategies

Mathematical description:

\(x = \{ u, y \} \)

\(u \) are the pumping rates at injection/production wells
\(y \) is the flow field (pressures/velocities)

\(f(x) \)
the cost of production and injection minus sales price of oil integrated over lifetime of the reservoir

\(g(x) = y - q(u) = 0 \)
constraints that come from the fact that there is a flow field \(y = q(u) \) for each \(u \). \(y \) may, for example, satisfy the multiphase porous media flow equations.
Applications: Optimal oil production strategies

Inequality constraints $h(x) \geq 0$:

\[U_{i \text{max}} - u_i \geq 0 \]
(for all wells i):
Pumps have a maximal pumping rate/pressure

\[\text{produced}_\text{oil}(T)/\text{available}_\text{oil}(0) - c \geq 0 \]
Legislative requirement to produce at least a certain fraction

\[c_{\text{w}} - \text{water}_\text{cut}(t) \geq 0 \]
(for all times t):
It is inefficient to produce too much water

\[\text{pressure} - d \geq 0 \]
(for all times and locations):
Keeps the reservoir from collapsing
Applications: Optimal oil production strategies

Analysis:
linearity: \(f(x) \) is nonlinear
\(g(x) \) is certainly nonlinear
\(h(x) \) may be nonlinear

convexity: no

constrained: yes

smooth: \(f(x) \) yes
\(g(x) \) yes
\(h(x) \) yes

derivatives: available, but probably hard to compute in practice

continuous: yes, not discrete

ODE/PDE: yes, not just algebraic
Applications: Switching lights at an intersection

Mathematical description:

\[x = \{ T, t_i^1, t_i^2 \} \]
- round-trip time \(T \) for the stop light system,
- switch-green and switch-red times for all lights \(i \)

\[f(x) \]
- number of cars that can pass the intersection per hour; to be maximized.

Note: unknown as a function, but we can measure it
Applications: Switching lights at an intersection

Inequality constraints $h(x) \geq 0$:

$300 - T \geq 0$:
No more than 5 minutes of round-trip time, so that people don't have to wait for too long

$t_i^2 - t_i^1 - 5 \geq 0$:
At least 5 seconds of green at each light i

$t_{i+1}^1 - t_i^2 - 5 \geq 0$:
At least 5 seconds of all-red between different greens
Applications: Switching lights at an intersection

Analysis:

linearity: \(f(x) \) ?? \(h(x) \) is linear

convexity: ??

constrained: yes

smooth: \(f(x) \) ?? \(h(x) \) yes

derivatives: not available

continuous: yes, not discrete

ODE/PDE: no
Applications: Trajectory planning

Mathematical description:
\[x = \{y(t), u(t)\} \] position of spacecraft and thrust vector at time \(t \)
\[f(x) = \int_{0}^{T} |u(t)| \, dt \] minimize fuel consumption

\[m \dot{y}(t) - u(t) = 0 \] Newton's law
\[|y(t)| - d_0 \geq 0 \] Do not get too close to the sun
\[u_{\text{max}} - |u(t)| \geq 0 \] Only limited thrust available
Applications: Trajectory planning

Analysis:

- linearity: $f(x)$ is nonlinear
 $g(x)$ is linear
 $h(x)$ is nonlinear

- convexity: no

- constrained: yes

- smooth: yes, here

- derivatives: computable

- continuous: yes, not discrete

ODE/PDE: yes

Note: Trajectory planning problems are often called *optimal control*.
Applications: Data fitting 1

Mathematical description:
\[x = \{a, b\} \text{ parameters for the model} \]
\[f(x) = \frac{1}{N} \sum_i |y_i - y(t_i)|^2 \]
mean square difference between predicted value and actual measurement

\[y(t) = \frac{1}{a} \log \cosh(\sqrt{ab \cdot t}) \]
Applications: Data fitting 1

Analysis:
- linearity: $f(x)$ is nonlinear
- convexity: ?? (probably yes)
- constrained: no
- smooth: yes
- derivatives: available, and easy to compute in practice
- continuous: yes, not discrete
- ODE/PDE: no, algebraic
Applications: Data fitting 2

Mathematical description:
\[x = \{a, b\} \quad \text{parameters for the model} \]
\[f(x) = \frac{1}{N} \sum_i |y_i - y(t_i)|^2 \]
mean square difference between predicted value and actual measurement
\[\rightarrow \text{least squares problem} \]
Applications: Data fitting 2

Analysis:
linearity: $f(x)$ is quadratic
Convexity: yes
constrained: no
smooth: yes
derivatives: available, and easy to compute in practice
continuous: yes, not discrete
ODE/PDE: no, algebraic

Note: Quadratic optimization problems (even with linear constraints) are easy to solve!
Applications: Data fitting 3

Mathematical description:

\[x = \{a, b\} \quad \text{parameters for the model} \quad y(t) = at + b \]

\[f(x) = \frac{1}{N} \sum_i |y_i - y(t_i)| \]

mean absolute difference between predicted value and actual measurement

→ least absolute error problem
Applications: Data fitting 3

Analysis:
 linearity: \(f(x) \) is nonlinear
 Convexity: yes
 constrained: no
 smooth: no!
 derivatives: not differentiable
 continuous: yes, not discrete
 ODE/PDE: no, algebraic

Note: Non-smooth problems are really hard to solve!
Applications: Data fitting 3, revisited

Mathematical description:

\[x = \{ a, b, s_i \} \quad \text{parameters for the model} \]

“slack” variables \(s_i \)

\[f(x) = \frac{1}{N} \sum_i s_i \rightarrow \min! \]

\[s_i - |y_i - y(t_i)| \geq 0 \]
Applications: Data fitting 3, revisited

Analysis:

- linearity: \(f(x) \) is linear, \(h(x) \) is not linear
- Convexity: yes
- constrained: yes
- smooth: no!
- derivatives: not differentiable
- continuous: yes, not discrete
- ODE/PDE: no, algebraic

Note: Non-smooth problems are really hard to solve!
Applications: Data fitting 3, re-revisited

Mathematical description:

\[x = \{a, b, s_i \} \quad \text{parameters for the model} \quad y(t) = at + b \]

“slack” variables \(s_i \)

\[f(x) = \frac{1}{N} \sum_i s_i \rightarrow \min! \]

\[s_i - |y_i - y(t_i)| \geq 0 \quad s_i - (y_i - y(t)) \geq 0 \]

\[s_i + (y_i - y(t)) \geq 0 \]
Applications: Data fitting 3, re-revisited

Analysis:
linearity: $f(x)$ is linear, $h(x)$ is now also linear

Convexity: yes

constrained: yes

smooth: yes

derivatives: yes

continuous: yes, not discrete

ODE/PDE: no, algebraic

Note: Linear problems with linear constraints are simple to solve!
Applications: Traveling salesman

Task: Find the shortest tour through N cities with mutual distances d_{ij}.

(Here: the 15 biggest cities of Germany; there are 43,589,145,600 possible tours through all these cities.)

Mathematical description:

- $x = \{c_i\}$ the index of the ith city on our trip, $i = 1 \ldots N$
- $f(x) = \sum_i d_{c_i c_{i+1}}$
- $c_i \neq c_j$ for $i \neq j$ no city is visited twice (alternatively: $c_i c_j \geq 1$)
Applications: Traveling salesman

Analysis:

- Linearity: \(f(x) \) is linear, \(h(x) \) is nonlinear
- Convexity: meaningless
- Constrained: yes
- Smooth: meaningless
- Derivatives: meaningless
- Continuous: discrete: \(x \in X \subset \{1,2,\ldots,N\}^N \)
- ODE/PDE: no, algebraic

Note: Integer problems (combinatorial problems) are often exceedingly complicated to solve!
Applications: Classification problems

Task: Find a line that as best as possible separates the two known data sets.

Goal: When a new point comes in, be able to classify it with high probability as either green or purple.

Challenge: This often happens in very high dimensions.

Mathematical description:

\[x = \{a, b\} \quad \text{Coefficients of the line } y = ax + b \]

\[f(x) \quad \text{Number of misclassified green/purple points} \]
Applications: Classification problems

Analysis:
linearity: \(f(x) \) is nonlinear – in fact, it is a step function!

Convexity: no

constrained: no

smooth: no

derivatives: no (step function)

continuous: yes, not discrete

ODE/PDE: no, algebraic

Note: Non-smooth problems are difficult to solve. We may do well reformulating the problem to something smooth.
Applications: Neural networks

Method: Each layer of the NN can be thought of as a parameterized function with inputs from the previous layer.

Task: Find parameters so that we get desired outputs for known inputs.

Mathematical description:

\[x^n_{ij} \quad \text{Parameters of node } i,j \text{ of layer } n \]

\[f(x) \quad \text{Average difference between desired and obtained classification} \]
Applications: Neural networks

Analysis:
 linearity: \(f(x) \) is nonlinear
 Convexity: ?
 constrained: maybe (e.g. if weights have to be positive)
 smooth: yes
 derivatives: depends on formulation
 continuous: yes, not discrete
 ODE/PDE: no, algebraic
Part 2

Minima, minimizers, sufficient and necessary conditions