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Part 1

Examples of optimization 
problems
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Let X be a Banach space (e.g., Rn);  let 
    f : X→RÈ {+¥} 
    g: X→Rne

    h: X→Rni

be functions on X, find   x ∈ X  so that

Questions: Under what conditions on X, f, g, h can we 
guarantee that (i) there is a solution; (ii) the solution is unique; 
(iii) the solution is stable.

Mathematically speaking:

     f (x)  →  min!
g (x)  =  0
h(x)  ≥  0

What is an optimization problem?
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What is an optimization problem?

● x={u,y} is a set of design and auxiliary variables that
completely describe a physical, chemical, 
economical model; 

● f(x) is an objective function with which we measure how
good a design is;

● g(x) describes relationships that have to be met exactly
(for example the relationship between y and u)

● h(x) describes conditions that must not be exceeded

Then find me that x for which

Question: How do I find this x?

In practice:

     f ( x)  →  min!
g (x)  =  0
h( x)  ≥  0
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What is an optimization problem?

Optimization problems are often subdivided into classes:

Linear    vs.   Nonlinear 

Convex   vs.   Nonconvex

Unconstrained   vs.   Constrained          

Smooth   vs.   Nonsmooth

With derivatives   vs.   Derivativefree         

Continuous   vs.   Discrete          

Algebraic   vs.   ODE/PDE    

        

Depending on which class an actual problem falls into, there are 
different classes of algorithms.
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Examples

Linear and nonlinear functions f(x) 
on a domain bounded by linear inequalities
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Examples

Strictly convex, convex, and nonconvex functions f(x)
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Another non-convex function with many (local) optima.
We may want to find the one global optimum.

Examples
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Optima in the presence of (nonsmooth) constraints.

Examples
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Smooth and non-smooth nonlinear functions.

Examples
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Mathematical description:
x={u,y} u are the design parameters (e.g. the shape of the car)

y is the flow field around the car

f(x): the drag force that results from the flow field

g(x)=y-q(u)=0
constraints that come from the fact that there is a flow
field y=q(u) for each design. y may, for example, satisfy
the Navier-Stokes equations

Applications: The drag coefficient of a car
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Inequality constraints:
(expected sales price – profit margin) - cost(u) ≥ 0

volume(u) – volume(me, my wife, and her bags) ≥ 0

material stiffness * safety factor
- max(forces exerted by y on the frame)  ≥ 0

legal margins(u) ≥ 0

Applications: The drag coefficient of a car
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Analysis:
linearity: f(x) may be linear

g(x) is certainly nonlinear (Navier-Stokes equations)
h(x) may be nonlinear

convexity: ??

constrained: yes

smooth: f(x) yes
g(x) yes
h(x) some yes, some no

derivatives: available, but probably hard to compute in practice

continuous: yes, not discrete

ODE/PDE: yes, not just algebraic

Applications: The drag coefficient of a car
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Remark:

In the formulation as shown, the objective function was of the form

f(x) = c
d
(y)

In practice, one often is willing to trade efficiency for cost, i.e. we are 
willing to accept a slightly higher drag coefficient if the cost is 
smaller. This leads to objective functions of the form

f(x) = c
d
(y) + a cost(u)

or

f(x) = c
d
(y) + a[cost(u)]2

Applications: The drag coefficient of a car
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Applications: Optimal oil production strategies
Permeability field

Mathematical description:
x={u,y} u are the pumping rates at injection/production wells

y is the flow field (pressures/velocities)

f(x) the cost of production and injection minus sales price of
oil integrated over lifetime of the reservoir

g(x)=y-q(u)=0
constraints that come from the fact that there is a flow
field y=q(u) for each u. y may, for example, satisfy
the multiphase porous media flow equations

Oil saturation
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Applications: Optimal oil production strategies

Inequality constraints h(x)≥0:

U
imax

-u
i
 ≥ 0 (for all wells i):

Pumps have a maximal pumping rate/pressure

produced_oil(T)/available_oil(0) – c ≥ 0:
Legislative requirement to produce at least 
a certain fraction

c
w
 - water_cut(t)  ≥ 0  (for all times t):

It is inefficient to produce too much water

pressure – d ≥ 0 (for all times and locations):
Keeps the reservoir from collapsing
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Applications: Optimal oil production strategies

Analysis:
linearity: f(x) is nonlinear

g(x) is certainly nonlinear
h(x) may be nonlinear

convexity: no

constrained: yes

smooth: f(x) yes
g(x) yes
h(x) yes

derivatives: available, but probably hard to compute in practice

continuous: yes, not discrete

ODE/PDE: yes, not just algebraic
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Applications: Switching lights at an intersection

Mathematical description:
x={T, t

i

1, t
i

2} round-trip time T for the stop light system, 

switch-green and switch-red times for all lights i

f(x) number of cars that can pass the intersection per
hour; to be maximized.

Note: unknown as a function, but we can measure it
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Applications: Switching lights at an intersection

Inequality constraints h(x)≥0:

300 – T ≥ 0:
No more than 5 minutes of round-trip time, so that people
don't have to wait for too long

t
i

2 - t
i

1 – 5 ≥ 0:

At least 5 seconds of green at each light i

t1

i+1 
- t

i

2 – 5 ≥ 0:

At least 5 seconds of all-red between different greens
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Applications: Switching lights at an intersection

Analysis:

linearity: f(x) ??
h(x) is linear

convexity: ??

constrained: yes

smooth: f(x) ??
h(x) yes

derivatives: not available

continuous: yes, not discrete

ODE/PDE: no
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Applications: Trajectory planning

Mathematical description:
x={y(t),u(t)} position of spacecraft and thrust vector at time t

minimize fuel consumption

Newton's law

Do not get too close to the sun

Only limited thrust available

m ÿ t −u t =0

f  x=∫0

T
∣u t ∣dt

∣y t ∣−d 0≥0

umax−∣u t ∣≥0
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Applications: Trajectory planning

Analysis:

linearity: f(x) is nonlinear
g(x) is linear
h(x) is nonlinear

convexity: no
constrained: yes
smooth: yes, here
derivatives: computable
continuous: yes, not discrete

ODE/PDE: yes

Note: Trajectory planning problems are often called optimal 
control.
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Applications: Data fitting 1

Mathematical description:
x={a,b} parameters for the model 

f(x)=1/N ∑
i
 |y

i
-y(t

i
)|2

mean square difference between predicted value
and actual measurement

y t =
1
a

log cosh ab t 
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Applications: Data fitting 1

Analysis:
linearity: f(x) is nonlinear

convexity: ?? (probably yes)

constrained: no

smooth: yes

derivatives: available, and easy to compute in practice

continuous: yes, not discrete

ODE/PDE: no, algebraic
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Applications: Data fitting 2

Mathematical description:
x={a,b} parameters for the model 

f(x)=1/N ∑
i
 |y

i
-y(t

i
)|2

mean square difference between
predicted value and actual measurement

→ least squares problem

y t =atb
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Applications: Data fitting 2

Analysis:
linearity: f(x) is quadratic

Convexity: yes

constrained: no

smooth: yes

derivatives: available, and easy to compute in practice

continuous: yes, not discrete

ODE/PDE: no, algebraic

Note: Quadratic optimization problems (even with linear 
constraints) are easy to solve!
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Applications: Data fitting 3

Mathematical description:
x={a,b} parameters for the model 

f(x)=1/N ∑
i
 |y

i
-y(t

i
)|

mean absolute difference between predicted
value and actual measurement

→ least absolute error problem

y t =atb
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Applications: Data fitting 3

Analysis:
linearity: f(x) is nonlinear

Convexity: yes

constrained: no

smooth: no!

derivatives: not differentiable

continuous: yes, not discrete

ODE/PDE: no, algebraic

Note: Non-smooth problems are really hard to solve!
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Applications: Data fitting 3, revisited

Mathematical description:
x={a,b, s

i
} parameters for the model 

“slack” variables s
i

f(x)=1/N ∑
i
 s

i
  →  min!

s
i
 - |y

i
-y(t

i
)| ≥ 0

y t =atb
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Applications: Data fitting 3, revisited

Analysis:
linearity: f(x) is linear, h(x) is not linear

Convexity: yes

constrained: yes

smooth: no!

derivatives: not differentiable

continuous: yes, not discrete

ODE/PDE: no, algebraic

Note: Non-smooth problems are really hard to solve!
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Applications: Data fitting 3, re-revisited

Mathematical description:
x={a,b, s

i
} parameters for the model 

“slack” variables s
i

f(x)=1/N ∑
i
 s

i
  →  min!

s
i
 - |y

i
-y(t

i
)| ≥ 0 s

i
 - (y

i
-y(t

i
)) ≥ 0

s
i
 + (y

i
-y(t

i
)) ≥ 0

y t =atb
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Applications: Data fitting 3, re-revisited

Analysis:
linearity: f(x) is linear, h(x) is now also linear

Convexity: yes

constrained: yes

smooth: yes

derivatives: yes

continuous: yes, not discrete

ODE/PDE: no, algebraic

Note: Linear problems with linear constraints are simple to 
solve!
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Applications: Traveling salesman

Mathematical description:
x={c

i 
} the index of the ith city on our trip, i=1...N

f(x)=                  

no city is visited twice (alternatively:               )

Task: Find the shortest tour 
through N cities with mutual 
distances d

ij
.

(Here: the 15 biggest cities of Germany; 
there are 43,589,145,600 possible tours 
through all these cities.)

∑i
d ci c i1

ci≠c j    for i≠ j ci c j≥1
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Applications: Traveling salesman

Analysis:
linearity: f(x) is linear, h(x) is nonlinear

Convexity: meaningless

constrained: yes

smooth: meaningless

derivatives: meaningless

continuous: discrete: 

ODE/PDE: no, algebraic

Note: Integer problems (combinatorial problems) are often 
exceedingly complicated to solve!

x∈X ⊂{1,2,. .. , N }
N
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Applications: Classification problems

Mathematical description:
x={a,b

 
} Coefficients of the line y=ax+b

f(x)              Number of misclassified green/purple points

Task: Find a line that as best as 
possible separates the two 
known data sets.

Goal: When a new point comes 
in, be able to classify it with high 
probability as either green or 
purple.

Challenge: This often happens 
in very high dimensions.
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Applications: Classification problems

Analysis:
linearity: f(x) is nonlinear – in fact, it is a step function!

Convexity: no

constrained: no

smooth: no

derivatives: no (step function)

continuous: yes, not discrete

ODE/PDE: no, algebraic

Note: Non-smooth problems are difficult to solve. We may do 
well reformulating the problem to something smooth.
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Applications: Neural networks

Method: Each layer of the NN can be thought of as a parameterized 
function with inputs from the previous layer.

Task: Find parameters so that we get desired outputs for known 
inputs.

Mathematical description:
xn

ij
Parameters of node i,j of layer n

f(x)     Average difference between desired and obtained
classification
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Applications: Neural networks

Analysis:
linearity: f(x) is nonlinear

Convexity: ?

constrained: maybe (e.g. if weights have to be positive)

smooth: yes

derivatives: depends on formulation

continuous: yes, not discrete

ODE/PDE: no, algebraic
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Part 2

Minima, minimizers, 
sufficient and necessary 

conditions
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