# Part 1

# Examples of optimization problems

#### What is an optimization problem?

#### Mathematically speaking:

Let X be a Banach space (e.g.,  $R^n$ ); let

$$f: X \to R \cup \{+\infty\}$$

$$g: X \to R^{ne}$$

$$h: X \to R^{ni}$$

be functions on X, find  $x \in X$  so that

$$f(x) \Rightarrow \min!$$
  
 $g(x) = 0$   
 $h(x) \ge 0$ 

**Questions:** Under what conditions on X, f, g, h can we guarantee that (i) there is a solution; (ii) the solution is unique; (iii) the solution is stable.

#### What is an optimization problem?

#### In practice:

- *x*={*u*,*y*} is a set of design and auxiliary variables that completely describe a physical, chemical, economical model;
- f(x) is an objective function with which we measure how good a design is;
- g(x) describes relationships that have to be met exactly (for example the relationship between y and u)
- h(x) describes conditions that must not be exceeded

Then find me that *x* for which

$$f(x) \rightarrow \min!$$
  
 $g(x) = 0$   
 $h(x) \ge 0$ 

**Question:** How do I find this *x*?

#### What is an optimization problem?

Optimization problems are often subdivided into classes:

Linear vs. Nonlinear

Convex vs. Nonconvex

Unconstrained vs. Constrained

Smooth vs. Nonsmooth

With derivatives vs. Derivativefree

Continuous vs. Discrete

Algebraic vs. ODE/PDE

Depending on which class an actual problem falls into, there are different classes of algorithms.





Linear and nonlinear functions f(x) on a domain bounded by linear inequalities



Strictly convex, convex, and nonconvex functions f(x)



Another non-convex function with many (local) optima. We may want to find the one *global* optimum.



Optima in the presence of (nonsmooth) constraints.



Smooth and non-smooth nonlinear functions.



#### **Mathematical description:**

 $x=\{u,y\}$  u are the design parameters (e.g. the *shape* of the car) y is the flow field around the car

f(x): the drag force that results from the flow field

g(x)=y-q(u)=0

constraints that come from the fact that there is a flow field y=q(u) for each design. y may, for example, satisfy the Navier-Stokes equations

Wolfgang Bangerth

#### **Inequality constraints:**

(expected sales price – profit margin) -  $cost(u) \ge 0$ 



volume(u) – volume(me, my wife, and her bags)  $\geq 0$ 



material stiffness \* safety factor

- max(forces exerted by y on the frame)  $\geq 0$ 

**Analysis:** 

linearity: f(x) may be linear

g(x) is certainly nonlinear (Navier-Stokes equations)

h(x) may be nonlinear

convexity: ??

constrained: yes

smooth: f(x) yes

g(x) yes

h(x) some yes, some no

derivatives: available, but probably hard to compute in practice

continuous: yes, not discrete

ODE/PDE: yes, not just algebraic

#### **Remark:**

In the formulation as shown, the objective function was of the form

$$f(x) = c_{d}(y)$$

In practice, one often is willing to trade efficiency for cost, i.e. we are willing to accept a slightly higher drag coefficient if the cost is smaller. This leads to objective functions of the form

$$f(x) = c_{d}(y) + a \cos(u)$$

or

$$f(x) = c_{d}(y) + a[\cos(u)]^{2}$$

#### **Applications: Optimal oil production strategies**



#### **Mathematical description:**

 $x=\{u,y\}$  u are the pumping rates at injection/production wells y is the flow field (pressures/velocities)

f(x) the cost of production and injection minus sales price of oil integrated over lifetime of the reservoir

g(x)=y-q(u)=0

constraints that come from the fact that there is a flow field y=q(u) for each u. y may, for example, satisfy the multiphase porous media flow equations Bangerth

#### **Applications: Optimal oil production strategies**

#### Inequality constraints $h(x) \ge 0$ :

$$U_{imax}-u_{i} \ge 0$$
 (for all wells *i*):  
Pumps have a maximal pumping rate/pressure

produced\_oil(T)/available\_oil(0) –  $c \ge 0$ : Legislative requirement to produce at least a certain fraction

$$c_w$$
 - water\_cut( $t$ )  $\geq 0$  (for all times  $t$ ):  
It is inefficient to produce too much water

pressure  $-d \ge 0$  (for all times and locations): Keeps the reservoir from collapsing

#### **Applications: Optimal oil production strategies**

**Analysis:** 

linearity: f(x) is nonlinear

g(x) is certainly nonlinear

h(x) may be nonlinear

convexity: no

constrained: yes

smooth: f(x) yes

g(x) yes

h(x) yes

derivatives: available, but probably hard to compute in practice

continuous: yes, not discrete

ODE/PDE: yes, not just algebraic

#### **Applications: Switching lights at an intersection**



#### **Mathematical description:**

 $X = \{T, t_i^1, t_i^2\}$ 

f(x)

round-trip time *T* for the stop light system,

switch-green and switch-red times for all lights i

number of cars that can pass the intersection per

hour; to be maximized.

Note: unknown as a function, but we can measure it

#### **Applications: Switching lights at an intersection**

#### Inequality constraints $h(x) \ge 0$ :

$$300 - T \ge 0$$
:

No more than 5 minutes of round-trip time, so that people don't have to wait for too long

$$t_i^2 - t_i^1 - 5 \ge 0$$
:

At least 5 seconds of green at each light *i* 

$$t_{i+1}^1 - t_i^2 - 5 \ge 0$$
:

At least 5 seconds of all-red between different greens

#### **Applications: Switching lights at an intersection**

#### **Analysis:**

linearity: f(x) ??

h(x) is linear

convexity: ??

constrained: yes

smooth: f(x)??

h(x) yes

derivatives: not available

continuous: yes, not discrete

ODE/PDE: no

#### **Applications: Trajectory planning**





#### **Mathematical description:**

 $x=\{y(t),u(t)\}$  position of spacecraft and thrust vector at time t  $f(x)=\int_0^T |u(t)|dt$  minimize fuel consumption

$$m \ddot{y}(t) - u(t) = 0$$
 Newton's law  $|y(t)| - d_0 \ge 0$  Do not get too close to the sun  $u_{\max} - |u(t)| \ge 0$  Only limited thrust available

#### **Applications: Trajectory planning**

#### **Analysis:**

linearity: f(x) is nonlinear

g(x) is linear

h(x) is nonlinear

convexity: no

constrained: yes

smooth: yes, here

derivatives: computable

continuous: yes, not discrete

ODE/PDE: yes

**Note:** Trajectory planning problems are often called *optimal* control.



#### **Mathematical description:**

$$x=\{a,b\}$$
 parameters for the model  $y(t)=\frac{1}{a}\log\cosh(\sqrt{ab}\,t)$   
 $f(x)=1/N \sum_{i} |y_{i}-y(t_{i})|^{2}$ 

mean square difference between predicted value and actual measurement

**Analysis:** 

linearity: f(x) is nonlinear

convexity: ?? (probably yes)

constrained: no

smooth: yes

derivatives: available, and easy to compute in practice

continuous: yes, not discrete

ODE/PDE: no, algebraic



#### **Mathematical description:**

$$x=\{a,b\}$$

 $x=\{a,b\}$  parameters for the model

$$f(x)=1/N \sum_{i} |y_{i}-y(t_{i})|^{2}$$

mean square difference between predicted value and actual measurement

→ *least squares* problem

y(t)=at+b

**Analysis:** 

linearity: f(x) is quadratic

Convexity: yes

constrained: no

smooth: yes

derivatives: available, and easy to compute in practice

continuous: yes, not discrete

ODE/PDE: no, algebraic

**Note:** Quadratic optimization problems (even with linear constraints) are easy to solve!



#### **Mathematical description:**

 $x=\{a,b\}$ 

parameters for the model y(t)=at+b

$$f(x)=1/N \sum_{i} |y_{i}-y(t_{i})|$$

mean *absolute* difference between predicted value and actual measurement

→ *least absolute error* problem

**Analysis:** 

linearity: f(x) is nonlinear

Convexity: yes

constrained: no

smooth: no!

derivatives: not differentiable

continuous: yes, not discrete

ODE/PDE: no, algebraic

Note: Non-smooth problems are really hard to solve!

#### **Applications: Data fitting 3, revisited**



#### **Mathematical description:**

 $x=\{a,b,s\}$  parameters for the model y(t)=at+b"slack" variables  $s_i$ 

$$f(x)=1/N \sum_{i} s_{i} \rightarrow \min!$$

$$|S_i - |y_i - y(t_i)| \ge 0$$

$$y(t) = at + b$$

#### **Applications: Data fitting 3, revisited**

**Analysis:** 

linearity: f(x) is linear, h(x) is not linear

Convexity: yes

constrained: yes

smooth: no!

derivatives: not differentiable

continuous: yes, not discrete

ODE/PDE: no, algebraic

Note: Non-smooth problems are really hard to solve!

#### **Applications: Data fitting 3, re-revisited**



#### **Mathematical description:**

$$x=\{a,b,s\}$$

parameters for the model y(t)=at+b

"slack" variables  $s_i$ 

$$f(x)=1/N \sum_{i} s_{i} \rightarrow \min!$$

$$s_i - |y_i - y(t)| \ge 0$$

$$S_i - (y_i - y(t_i)) \ge 0$$

$$S_i + (y_i - y(t_i)) \ge 0$$

#### **Applications: Data fitting 3, re-revisited**

**Analysis:** 

linearity: f(x) is linear, h(x) is now also linear

Convexity: yes

constrained: yes

smooth: yes

derivatives: yes

continuous: yes, not discrete

ODE/PDE: no, algebraic

**Note:** Linear problems with linear constraints are simple to solve!

#### **Applications: Traveling salesman**



**Task:** Find the shortest tour through N cities with mutual distances  $d_{ij}$ .

(Here: the 15 biggest cities of Germany; there are 43,589,145,600 possible tours through all these cities.)

#### **Mathematical description:**

 $X = \{C_i\}$ 

the index of the *i*th city on our trip, i=1...N

$$f(x) = \sum_{i} d_{c_i c_{i+1}}$$

 $c_i \neq c_j$  for  $i \neq j$  no city is visited twice (alternatively:  $c_i c_j \geq 1$ )

#### **Applications: Traveling salesman**

**Analysis:** 

linearity: f(x) is linear, h(x) is nonlinear

Convexity: meaningless

constrained: yes

smooth: meaningless

derivatives: meaningless

continuous: discrete:  $x \in X \subset \{1,2,...,N\}^N$ 

ODE/PDE: no, algebraic

**Note:** Integer problems (combinatorial problems) are often exceedingly complicated to solve!

#### **Applications: Classification problems**



**Task:** Find a line that as best as possible separates the two known data sets.

**Goal:** When a new point comes in, be able to *classify* it with high probability as either green or purple.

Challenge: This often happens in very high dimensions.

#### **Mathematical description:**

$$x=\{a,b\}$$

Coefficients of the line y=ax+b

f(x)

Number of misclassified green/purple points

#### **Applications: Classification problems**

**Analysis:** 

linearity: f(x) is nonlinear – in fact, it is a step function!

Convexity: no

constrained: no

smooth: no

derivatives: no (step function)

continuous: yes, not discrete

ODE/PDE: no, algebraic

**Note:** Non-smooth problems are difficult to solve. We may do well reformulating the problem to something smooth.

#### **Applications: Neural networks**



**Method:** Each layer of the NN can be thought of as a parameterized function with inputs from the previous layer.

**Task:** Find parameters so that we get desired outputs for known inputs.

#### **Mathematical description:**

 $x_{ij}^n$  Parameters of node i,j of layer n

f(x) Average difference between desired and obtained classification

#### **Applications: Neural networks**

**Analysis:** 

linearity: f(x) is nonlinear

Convexity: ?

constrained: maybe (e.g. if weights have to be positive)

smooth: yes

derivatives: depends on formulation

continuous: yes, not discrete

ODE/PDE: no, algebraic

# Part 2

# Minima, minimizers, sufficient and necessary conditions