
MATH 651: Numerical Analysis II
Instructor: Prof. Wolfgang Bangerth

bangerth@colostate.edu

Homework assignment 5 – due 11/15/2019

Problem 1 (Convergence order of ODE solvers). The following two schemes for the approximation
of the ODE x′(t) = f(t, x(t)) are both Runge-Kutta methods based on the midpoint rule:

• The explicit Runge-Kutta-2 method:

F1 = ∆t f(tk, xk)

F2 = ∆t f

(
tk +

1

2
∆t, xk +

1

2
F1

)
xk+1 = xk + F2.

• The implicit midpoint rule, which can be written as an implicit 1-stage Runge-Kutta method:

F1 = ∆t f

(
tk +

1

2
∆t, xk +

1

2
F1

)
xk+1 = xk + F1.

You can probably guess the convergence order for both of these methods. Prove it rigorously.
(30 points)

Problem 2 (Regularity). We have spent a substantial amount of time talking about “regularity”, i.e.,
about what happens if the solution of an ODE or the right hand side is not sufficient smooth. Let us examine
this in practice. To this end, consider the following ODE:

x′(t) = x(t) + h(t),

x(0) = 1,

and let us choose

h(t) =

{
0 if t < t∗ = 1

3 ,

1 if t ≥ t∗ = 1
3 .

Because the right hand side is discontinuous, the solution has a kink at t = t∗ = 1
3 . (Note, however, that the

right hand side still satisfies the Lipschitz condition!) It is not difficult to compute the solution of this ODE
by noting that before t∗, the solution is simply an exponential and so x(t∗) = e1/3. After that, the equation
is x′(t) = x(t) + 1 with initial condition x(t∗) = e1/3, which has the exact solution x(t) = (1 + e−1/3)et − 1.

Now compute how accurate your approximation of x(1) is if you use the explicit Euler method using time
steps h = 1

2 ,
1
4 , . . . ,

1
1024 . For this choice of time step sizes, none of the discrete time points end up at t∗.

Compute a convergence rate from these numbers.
Then repeat this with time step sizes h = 1

3 ,
1
2 ·

1
3 ,

1
4 ·

1
3 , . . . ,

1
512 ·

1
3 . Now we always have a discrete time

point on t∗.
Repeat all of this using the explicit fourth-order Runge-Kutta scheme. (20 points)

1



Problem 3 (More rocketry). Let’s explore the world of rocketry some more. Let’s say you already
have your satellite in orbit around Earth. At time t (measured in seconds), its three-dimensional position
(measured in meters) is x(t). Then Newton tells us that

x′′(t) =
F(x(t))

m
, (1)

where we here consider the mass as constant. On the other hand, the forces F are only due to gravity.
Namely, if we place the Earth at the origin of the coordinate system, then

F(x(t)) = −(6371000)2
9.81m

|x(t)|2
x(t)

|x(t)|
. (2)

(In other words, the negative sign times the last fraction means that the force in “inward”, towards the
center of the Earth; the first of the fractions implies that the force decreases with the square of the distance.
The constants are chosen so that the magnitude of the acceleration is 9.81 m/s2 at the surface of the Earth.)

Find online the current altitude and speed of the International Space Station. Then convert this into
an initial position vector x0 and initial velocity ẋ0; you can choose x0 as any point you want that has the
correct altitude (but remember that x measures distance from the Earth center!) and ẋ0 as a vector that is
perpendicular to x0 (i.e., it is tangential to the Earth surface).

Using this model, the orbit of the International Space Station should be roughly circular. In practice,
the orbit will be a bit elliptic because you may have gotten the altitude or velocity slightly wrong by a few
percent. Either way, some elementary physical considerations show that the orbit must be closed, i.e., that
the orbiting object returns to the same location with the same velocity after some time, and then keeps
doing this over and over again. However, numerical approximations may not satisfy this property.

To test this assertion, run each of the following methods on this model:

• the explicit Euler method,

• the implicit Euler method,

• the trapezoidal (Crank-Nicolson) method,

• the Runge-Kutta method of order 4.

The implicit methods will require you to solve a nonlinear system of equations.
For each of these methods, consider the following tasks:

a) Using a time step ∆t = 500 seconds, compute a few orbits of the space station and plot the resulting
trajectory. What do you observe? Are the orbits closed? Illustrate your answer with plots. What
happens if you make the time step smaller?

b) For each of the four methods, compute the position after 100 orbits (this should be approximately
or slightly more than 6 days, i.e., 540, 000 seconds). Compute |x(T100 orbits) − xN )| where xN is the
numerical approximation after a number of time steps that corresponds to an end time of T100 orbits;
furthermore, because the exact orbits are closed, the exact solution will satisfy x(T100 orbits) = x0. In
other words, we want to know how accurately a method predicts a closed orbit.

Do this for time step sizes ∆t equal to Torbit

10 , Torbit

100 , Torbit

1000 , Torbit

10000 , and Torbit

100000 (where, obviously, Torbit is
the time for one orbit) and determine the convergence rate of each method.

Note: To answer this question, you will have to think a bit about the exact value of T100 orbits (or,
alternatively Torbit). This value can be computed exactly, or you can get good approximations by just
running your most accurate ODE solver for small time steps and extracting T100 orbits from its results;
on the other hand, looking the value up online will not be useful because you will not find it with
sufficient accuracy, and it will not exactly match the value that corresponds to your initial conditions.
In any case, explain how you chose T100 orbits.

(50 points)
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