
MATH 651: Numerical Analysis II
Instructor: Prof. Wolfgang Bangerth

bangerth@colostate.edu

Homework assignment 3 – due 10/11/2019

Problem 1 (Different methods for numerical integration). Let’s go back to the function f(x) = sin 1
x

and assume that we want to compute the integral J =
∫ 1

0.05
f(x) dx. The value of the integral is about

0.50283962, but you should find a numerical approximation to it.
Using a subdivision of the interval [0.05, 1] into K equally sized intervals Ik, approximate the integral

above using the

(i) midpoint rule,

(ii) trapezoidal rule,

(iii) Simpson rule,

(iv) 2-point Gauss rule,

(v) 3-point Gauss rule.

For each of these methods, generate a plot that shows the error between the exact integral value and your
numerical approximation as a function of the number of function evaluations you need. (The number of
function evaluations will be K, K + 1, 2K + 1, 2K, and 3K for the methods above.)

For each of the methods, also state how many function evaluations you need to achieve an accuracy of
10−6. (40 points)

Problem 2 (Romberg integration Use the Romberg procedure with the trapezoidal rule to obtain more
accurate results from function evaluations than the trapezoidal rule would yield by itself. Again show a plot
that depicts the error for the numerical approximation of the same integral as in the previous problem, as a
function of function evaluations. (20 points)

Problem 3 (Adaptive numerical integration In the derivation of the convergence rates for the various
methods, always came to a point where we could state the error as

|e| ≤
K∑

k=1

1

p!
‖f (p)‖∞,Ikh

p+1
k .

Here, p is the convergence order of the respective method. (Remember that we lose one power of h in the
summation, to obtain |e| = O(hp) if the hk are all roughly of the same size.)

This representation of the total suggests a strategy like the one we explored for interpolation: To choose
intervals so that hk is only small if f (p) is large. To this end, we should start with a relatively coarse mesh
and then for each interval compute some sort of criterion ηk that indicates how large the error is – for
example

ηk =
1

p!

∣∣∣∣f (p)(xk − xk−12

)∣∣∣∣hp+1
k ,

where (i) we assume that we can evaluate derivatives of f exactly, and (ii) we approximate the ∞-norm of
the derivative by just evaluating it at the midpoint of the interval. We would then “refine” the interval with
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the largest ηk by replacing it with its two halves, recompute our current approximation of the interval, and
repeat the process.

Try this strategy with the trapezoidal rule for the integral of Problem 1. This integral should be well
suited for this kind of adaptive procedure since the function’s smoothness varies substantially in the interval
[0.05, 1]. In each iteration of the algorithm, evaluate the error between the numerical approximation of the
integral and the exact value. Produce a plot that shows the error as a function of the number of function
evaluations you need and compare the results with the data obtained in part (a).

How many function evaluations do you now need to achieve an accuracy of 10−6? (40 points)
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