
MATH 451: Introduction to Numerical Analysis II
Instructor: Prof. Wolfgang Bangerth

bangerth@colostate.edu

Homework assignment 4 – due Friday 4/6/2018

Problem 1 (Numerical solution of a ODE). Consider the following scalar ordinary differential equation
(ODE):

x′(t) =
1

2
x(t), x(0) = 1.

For this particular equation, we know the exact solution: it corresponds to the exponential growth x(t) = e
1
2 t.

Implement codes for the following methods:

• the explicit Euler method,

• the implicit Euler method,

• the (implicit) trapezoidal (Crank-Nicolson) method,

• the (implicit) BDF-2 method. For this method, you need to bootstrap in the first time step; use the
Crank-Nicolson method for this.

Then compute approximations to x(4) using each of four methods and with step sizes ∆t = 2, 1, 12 ,
1
4 , . . . ,

1
32 .

Compute their respective errors e = |xN − x(4)| where xN is the approximation to x(4) at the end of the
last time step.

For each method, create either a table or a ∆t-vs-e graph that shows how the error decreases as the
mesh size is reduced. (For the graph, you will want to consider a log-log plot.) In all cases, the error should
behave as e ≈ C ∆ts for some C that we would like to be as small as possible, and an s that we would like
to be as large as possible. Determine both C and s from your data.

Discuss which method yields the most accurate answer. (40 points)

Problem 2 (Explicit vs implicit). Consider the prototypical “stiff” equation we have discussed in class:

x′1(t) = −λ1x1(t), x1(0) = x1,0,

x′2(t) = −λ2x2(t) + λ1x1(t), x2(0) = x2,0.

It describes the amounts of radioactive materials 1 and 2, where material 1 decays to material 2 at a rate of
λ1, and material 2 decays to something we do not track here at a rate of λ2.

Choose a situation in which λ1 = 1000, λ2 = 1, and x1,0 = x2,0 = 1. Let’s say we are interested in the
amount of each material that is left at t = 2. Implement a code that uses the explicit Euler method and
experiment with different values for the step sizes ∆t. What do you observe if ∆t is large? What do you
observe if it is small? Discuss your observations, and support them by graphs that show your numerical
approximations xk = (x1,k, x2,k)T at time steps k. State how small your ∆t has to be for the solution to not
diverge? Does this match the theory we have discussed? (20 points)

Problem 3 (Explicit vs implicit). Repeat the previous problem but use the implicit Euler method.
You will now have to solve a system of equations for xk = (x1,k, x2,k)T in terms of xk−1 = (x1,k−1, x2,k−1)T ,
but the special (linear) structure of the equations will allow you to write down the solution of this system of
equations by hand.

What is the situation now for large or small values of ∆t? Does the solution diverge for large ∆t? Is it
accurate? (20 points)
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Problem 3 (Numerical solution of a second-order ODE). A rocket that is shot up vertically expe-
riences upward acceleration from its engines, and downward acceleration due to gravity. Its height therefore
satisfies Newton’s law

d′′(t) =
F (t)

m(t)
, (1)

where d(t) denotes the distance from the earth’s center. Assume that the rocket is initially at rest at
d(0) = 6371000. After ignition, the engines produce a constant thrust for 10 minutes before shutting down:

T (t) =

{
12 for t < 600,
0 for t ≥ 600.

On the other hand, gravity generates the force

G(t) = −(6371000)2
10m(t)

d(t)2
.

(The factors here are chosen in such a way that at the surface – i.e., at d = 6371000 meters from the
center of the Earth – the gravity equals 10 meters per second square, i.e., approximately the correct value.
Furthermore, as is indeed the case, gravity decreases with the square of the distance.) The total force is
then F (t) = T (t) +G(t). The mass of the rocket decreases while fuel is burnt in the engines according to

m(t) =

{
1− 0.9t

600 for t < 600,
0.1 for t ≥ 600.

Rewrite this second order ordinary differential equation as a system of two first order equations. Then
numerically approximate the altitude of the rocket for times between t = 0 and t = 36000 using the explicit
Euler method. Try to determine the altitude at t = 36000 up to an accuracy of 1000 meters by playing with
the size of the time step ∆t. (20 points)
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