
MATH 451: Introduction to Numerical Analysis II
Instructor: Prof. Wolfgang Bangerth

bangerth@colostate.edu

Homework assignment 1 – due Friday 2/2/2018

Problem 1 (Computing the determinant of a matrix by recursion). Take the following sequence
of matrices:

A1 =
(√

1
)
, A2 =

(√
1
√

2√
2
√

3

)
, A3 =

√1
√

2
√

3√
2
√

3
√

4√
3
√

4
√

5

 , A4 =


√

1
√

2
√

3
√

4√
2
√

3
√

4
√

5√
3
√

4
√

5
√

6√
4
√

5
√

6
√

7

 , . . .

The general form of these matrices is that (An)ij =
√
i+ j − 1.

Implement an algorithm (in a programming language or system of your choice) that computes the deter-
minant of an n× n matrix as a floating point number, and apply it to the sequence of matrices above. Use
the algorithm that computes the determinant by expansion along one row or column, and that multiplies
the elements of this row or column by the determinant of the corresponding sub-matrix (so-called “matrix
minors”). Tabulate the following two pieces of information for n = 1, 2, . . . until runs take significantly too
long to complete:

• The value of the determinant det(An),

• The run-time of your algorithm.

State the largest size n for which you can compute the determinant of An in under one minute.
Submit the program you wrote as part of your answer. (25 points)

Problem 2 (Computing the determinant of a matrix by iteration). Repeat the previous problem,
but this time use an algorithm that computes the determinant by first reducing the matrix to triangular
form as you do in a different context when doing Gaussian elimination. Then compute the determinant as
the product of the diagonal entries of the triangular form.

Produce the same table, and again state the largest n for which you can compute the determinant in
under one minute. (25 points)

Problem 3 (Computing eigenvalues by graphing). For a given value of λ, the algorithms you have
developed above allow you to compute the value of the characteristic polynomial

pn(λ) = det(An − λI).

Note that this is easier than computing the coefficients of the polynomial: for this, you would have to keep
track of the symbol λ when computing the determinant. But we don’t need this here: whenever we need
p(λ) for a given value of λ (say, λ = 1.234), you build the matrix An−λI (that is, A− 1.234I) and then use
your implementation to compute its determinant.

Use this method to plot the function pn(λ) for n = 2, . . . , 8 for a range of λ values that encompasses
all interesting values. Use this to “graphically” find the eigenvalues by “guessing” which values λ result in
pn(λ) ≈ 0.

Tabulate these estimated eigenvalues for the different values of n above. Make sure that your method
yields correct results by comparing these estimates with the exact eigenvalues that you can compute for at
least the smallest two or three matrices by hand. (25 points)

1

Problem 4 (Complexities of algorithms). Assume you were trying to estimate eigenvalues to within
an accuracy of ε – i.e., you would want to have an estimate λ̃i for the ith eigenvalue λi so that |λ̃i − λi| ≤ ε
– and that you would want to do this for all eigenvalues of a matrix. Explain how you could use the method
of the previous problem to find such eigenvalue estimates with guaranteed accuracy ε.

Based on the methods you implemented in Problems 1 and 2 to compute determinants, state in asymptotic
complexity language (“big-O” notation, as a function of n and ε) how many operations your program would
have to execute for a matrix of size n. (15 points)

Problem 5 (Complexities of algorithms). We have discussed in class that the recursive method to
compute determinants (i.e., the one in Problem 1) is very very expensive as n becomes large, whereas the
iterative method from Problem 2 is only very expensive.

However, our discussions were based on the assumption that we didn’t know anything about the matrix.
State in asymptotic complexity language (“big-O” notation, as a function of n) how expensive it is to compute
the determinant using these two methods if you happen to know that A is an n × n “Hessenberg” matrix.
A Hessenberg is “almost upper triangular” in that the only non-zero entries in the matrix are the diagonal,
the entries above the diagonal, and the entries immediately below the diagonal. (In other words, a matrix
A is Hessenberg if Aij = 0 for all i > j + 1; for an upper triangular matrix, the condition would be that
Aij = 0 for all i > j.) In assessing the complexity, think about which operations in the two algorithms need
to be performed and which you can omit by knowing that certain entries of the matrix are zero.

Does your assessment change if the matrix was not only Hessenberg, but in fact “tri-diagonal”? A tri-
diagonal matrix has nonzero entries only on, immediately above, and immediately below the diagonal. That
is, we know that Aij 6= 0 only if |i− j| ≤ 1. (10 points)

2

