
MATH 620: Variational Methods and Optimization I
Instructor: Prof. Wolfgang Bangerth

Weber 214
bangerth@colostate.edu

Lectures: Engineering E 206, Mondays/Wednesdays/Fridays, 12-12:50pm
Office hours: Wednesdays, 1-2pm; or by appointment.

Homework assignment 6 – due Friday 11/30/2018

Problem 1 (A small variation for the Dirichlet problem). In class, we have gone through the details
of a proof for guaranteeing that a minimizer exists for the functional

I(u) =

∫
Ω

|∇u|2

over the (affine) space

Xg =
{
u ∈W 1,2(Ω) : u|∂Ω = g

}
.

Among the other consequences of the theorem were that the (unique) minimizer ū had to satisfy the weak
Euler-Lagrange equation ∫

Ω

∇ū · ∇ϕ = 0 ∀ϕ ∈ X0,

where X0 is the tangent space to Xg (i.e., consists of functions with zero boundary values), and that if ū
happens to be smooth enough, that it then have to satisfy the partial differential equation

−∆ū = 0 in Ω,

ū = g on ∂Ω,

i.e., it has to solve the Laplace equation.
Repeat some of the steps of the proof for the following variation:

I(u) =

∫
Ω

|∇u|2 − hu,

where h ∈ L2(Ω) is a given function. For simplicity take X0 = W 1,2
0 as the set to find a minimum over, i.e.,

g = 0.
In particular, do the following:

• Repeat the first step of showing that a minimizer exists. Namely, we needed to show that for a
minimizing sequence {un} ⊂ Xg so that I(un) → m = infu∈Xg I(u), there exists an N and γ < ∞ so
that for all n ≥ N , we have that ‖un‖W 1,2 ≤ γ.

‖u‖W 1,2 ≤ γ.

The key to this was to show that

‖u‖2W 1,2 ≤ c1I(u) + c2.

If this is true, then we know – because un is a minimizing sequence – that there are N < ∞, |a| <
∞, b <∞ so that

I(un) ≤ am+ b
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for all sufficiently large n ≥ N . As a consequence, we know that after that point in the sequence,
‖u‖W 1,2 ≤

√
c1(am+ b) + c2 = γ and the weak compactness of the ball of radius γ in W 1,2 then

guarantees that there is a weakly convergent subsequence.

Show a similar proof with the variation of the functional I(u) above.

• Show the weak Euler-Lagrange equation a minimizer has to satisfy.

• Show the strong Euler-Lagrange equation a minimizer has to satisfy if it is regular (smooth) enough.

(40 points)

The remainder of the homework is concerned with finding counter-examples for extensions of the general
theorem we have mentioned in class. It read as follows:

Theorem: Let Ω ⊂ Rn be a bounded open set with a Lipschitz boundary. Let f ∈ C0(Ω × R × Rn),
f = f(x, u, ξ) be a function that satisfies the following conditions:

(i) ξ 7→ f(x, u, ξ) is convex for all x ∈ Ω, u ∈ R;

(ii) there exist p > q ≥ 1 and α1 > 0, α2, α3 ∈ R (i.e., they must be finite) so that

f(x, u, ξ) ≥ α1|ξ|p + α2|u|q + α3

for all x ∈ Ω, u ∈ R, ξ ∈ Rn.

Then the functional

I(u) =

∫
Ω

f(x, u(x),∇u(x)) dx

has a minimizer ū in

Xg =
{
u ∈W 1,p(Ω) : u|∂Ω = g

}
,

where g is the restriction of some g̃ ∈ W 1,p(Ω) to ∂Ω. (Or viewed differently, g are prescribed boundary
values that are nice enough so that we can find an extension of g called g̃ so that g̃ ∈ W 1,p(Ω) and so that
g̃|∂Ω = g.)

If, furthermore,

(iii) f ∈ C1 and if there is a β ≥ 0 so that

|fu(x, u, ξ)| ≤ β(1 + |u|p−1 + |ξ|p−1),

|fξ(x, u, ξ)| ≤ β(1 + |u|p−1 + |ξ|p−1),

for all x ∈ Ω, u ∈ R, ξ ∈ Rn,

then ū satisfies the weak Euler-Lagrange equations∫
Ω

(fu(x, ū(x),∇ū(x))ϕ+ fξ(x, ū(x),∇ū(x)) · ∇ϕ)dx = 0

for all ϕ ∈ X0.
The theorem as stated seems to have a lot of restrictions, but it turns out that they all seem necessary

since one can find counter-examples without too much trouble. The following exercises are therefore meant
to probe the applicability of the theorem.
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Problem 2 (Application 1 of the general theorem). Consider the function f(x, u, ξ) = 1
4 |ξ|

4 +g(x, u)
where g ∈ C0,1(Ω× R). Show that the theorem applies. (20 points)

Problem 3 (Application 2 of the general theorem). Consider the function f(x, u, ξ) = 1
2 |ξ|

2− 1
2λ

2u2

where λ is large – say, larger than the constant in the Poincaré inequality for functions in W 1,2
0 (Ω). Show

that the theorem does not apply by checking each condition individually. Then try to construct a sequence
un so that I(un)→ −∞, i.e., show that I(u) is not bounded from below on X0 = W 1,2

0 . For this part of the
example, choose Ω = (0, 1) and λ > π. (20 points)

Problem 4 (Application 3 of the general theorem). Consider the function f(x, u, ξ) = (|ξ|2− 1)2 on
Ω = (0, 1) ⊂ R and with Xg = W 1,4

0 (0, 1). Show that the theorem does not apply by checking each condition
individually.

Derive the weak and strong Euler-Lagrange equations for this case. Show that u = 0 satisfies both of
these equations; then show that it is not a minimizer of I(u), for example by finding another function v ∈ Xg

so that I(v) < I(u). (20 points)
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