MATH 620: Variational Methods and Optimization I

Instructor: Prof. Wolfgang Bangerth
Weber 214
bangerth@colostate.edu
Lectures: Engineering E 206, Mondays/Wednesdays/Fridays, 12-12:50pm
Office hours: Wednesdays, $1-2 \mathrm{pm}$; or by appointment.

Homework assignment 6 - due Friday 11/30/2018

Problem 1 (A small variation for the Dirichlet problem). In class, we have gone through the details of a proof for guaranteeing that a minimizer exists for the functional

$$
I(u)=\int_{\Omega}|\nabla u|^{2}
$$

over the (affine) space

$$
X_{g}=\left\{u \in W^{1,2}(\Omega):\left.u\right|_{\partial \Omega}=g\right\}
$$

Among the other consequences of the theorem were that the (unique) minimizer \bar{u} had to satisfy the weak Euler-Lagrange equation

$$
\int_{\Omega} \nabla \bar{u} \cdot \nabla \varphi=0 \quad \forall \varphi \in X_{0}
$$

where X_{0} is the tangent space to X_{g} (i.e., consists of functions with zero boundary values), and that if \bar{u} happens to be smooth enough, that it then have to satisfy the partial differential equation

$$
\begin{aligned}
-\Delta \bar{u} & =0 & & \text { in } \Omega \\
\bar{u} & =g & & \text { on } \partial \Omega
\end{aligned}
$$

i.e., it has to solve the Laplace equation.

Repeat some of the steps of the proof for the following variation:

$$
I(u)=\int_{\Omega}|\nabla u|^{2}-h u
$$

where $h \in L^{2}(\Omega)$ is a given function. For simplicity take $X_{0}=W_{0}^{1,2}$ as the set to find a minimum over, i.e., $g=0$.

In particular, do the following:

- Repeat the first step of showing that a minimizer exists. Namely, we needed to show that for a minimizing sequence $\left\{u_{n}\right\} \subset X_{g}$ so that $I\left(u_{n}\right) \rightarrow m=\inf _{u \in X_{g}} I(u)$, there exists an N and $\gamma<\infty$ so that for all $n \geq N$, we have that $\left\|u_{n}\right\|_{W^{1,2}} \leq \gamma$.

$$
\|u\|_{W^{1,2}} \leq \gamma
$$

The key to this was to show that

$$
\|u\|_{W^{1,2}}^{2} \leq c_{1} I(u)+c_{2}
$$

If this is true, then we know - because u_{n} is a minimizing sequence - that there are $N<\infty,|a|<$ $\infty, b<\infty$ so that

$$
I\left(u_{n}\right) \leq a m+b
$$

for all sufficiently large $n \geq N$. As a consequence, we know that after that point in the sequence, $\|u\|_{W^{1,2}} \leq \sqrt{c_{1}(a m+b)+c_{2}}=\gamma$ and the weak compactness of the ball of radius γ in $W^{1,2}$ then guarantees that there is a weakly convergent subsequence.
Show a similar proof with the variation of the functional $I(u)$ above.

- Show the weak Euler-Lagrange equation a minimizer has to satisfy.
- Show the strong Euler-Lagrange equation a minimizer has to satisfy if it is regular (smooth) enough.

The remainder of the homework is concerned with finding counter-examples for extensions of the general theorem we have mentioned in class. It read as follows:

Theorem: Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set with a Lipschitz boundary. Let $f \in C^{0}\left(\Omega \times \mathbb{R} \times \mathbb{R}^{n}\right)$, $f=f(x, u, \xi)$ be a function that satisfies the following conditions:
(i) $\xi \mapsto f(x, u, \xi)$ is convex for all $x \in \Omega, u \in \mathbb{R}$;
(ii) there exist $p>q \geq 1$ and $\alpha_{1}>0, \alpha_{2}, \alpha_{3} \in \mathbb{R}$ (i.e., they must be finite) so that

$$
f(x, u, \xi) \geq \alpha_{1}|\xi|^{p}+\alpha_{2}|u|^{q}+\alpha_{3}
$$

for all $x \in \Omega, u \in \mathbb{R}, \xi \in \mathbb{R}^{n}$.
Then the functional

$$
I(u)=\int_{\Omega} f(x, u(x), \nabla u(x)) d x
$$

has a minimizer \bar{u} in

$$
X_{g}=\left\{u \in W^{1, p}(\Omega):\left.u\right|_{\partial \Omega}=g\right\}
$$

where g is the restriction of some $\tilde{g} \in W^{1, p}(\Omega)$ to $\partial \Omega$. (Or viewed differently, g are prescribed boundary values that are nice enough so that we can find an extension of g called \tilde{g} so that $\tilde{g} \in W^{1, p}(\Omega)$ and so that $\left.\left.\tilde{g}\right|_{\partial \Omega}=g.\right)$

If, furthermore,
(iii) $f \in C^{1}$ and if there is a $\beta \geq 0$ so that

$$
\begin{aligned}
\left|f_{u}(x, u, \xi)\right| & \leq \beta\left(1+|u|^{p-1}+|\xi|^{p-1}\right) \\
\left|f_{\xi}(x, u, \xi)\right| & \leq \beta\left(1+|u|^{p-1}+|\xi|^{p-1}\right)
\end{aligned}
$$

for all $x \in \Omega, u \in \mathbb{R}, \xi \in \mathbb{R}^{n}$,
then \bar{u} satisfies the weak Euler-Lagrange equations

$$
\int_{\Omega}\left(f_{u}(x, \bar{u}(x), \nabla \bar{u}(x)) \varphi+f_{\xi}(x, \bar{u}(x), \nabla \bar{u}(x)) \cdot \nabla \varphi\right) d x=0
$$

for all $\varphi \in X_{0}$.
The theorem as stated seems to have a lot of restrictions, but it turns out that they all seem necessary since one can find counter-examples without too much trouble. The following exercises are therefore meant to probe the applicability of the theorem.

Problem 2 (Application 1 of the general theorem). Consider the function $f(x, u, \xi)=\frac{1}{4}|\xi|^{4}+g(x, u)$ where $g \in C^{0,1}(\Omega \times \mathbb{R})$. Show that the theorem applies.
(20 points)
Problem 3 (Application 2 of the general theorem). Consider the function $f(x, u, \xi)=\frac{1}{2}|\xi|^{2}-\frac{1}{2} \lambda^{2} u^{2}$ where λ is large - say, larger than the constant in the Poincaré inequality for functions in $W_{0}^{1,2}(\Omega)$. Show that the theorem does not apply by checking each condition individually. Then try to construct a sequence u_{n} so that $I\left(u_{n}\right) \rightarrow-\infty$, i.e., show that $I(u)$ is not bounded from below on $X_{0}=W_{0}^{1,2}$. For this part of the example, choose $\Omega=(0,1)$ and $\lambda>\pi$.

Problem 4 (Application 3 of the general theorem). Consider the function $f(x, u, \xi)=\left(|\xi|^{2}-1\right)^{2}$ on $\Omega=(0,1) \subset \mathbb{R}$ and with $X_{g}=W_{0}^{1,4}(0,1)$. Show that the theorem does not apply by checking each condition individually.

Derive the weak and strong Euler-Lagrange equations for this case. Show that $u=0$ satisfies both of these equations; then show that it is not a minimizer of $I(u)$, for example by finding another function $v \in X_{g}$ so that $I(v)<I(u)$.
(20 points)

