
MATH 620: Variational Methods and Optimization I
Instructor: Prof. Wolfgang Bangerth

Weber 214
bangerth@colostate.edu

Lectures: Engineering E 206, Mondays/Wednesdays/Fridays, 12-12:50pm
Office hours: Wednesdays, 1-2pm; or by appointment.

Homework assignment 4 – due Friday 10/26/2018

Problem 1 (Equivalence of norms on Rn). On finite dimensional spaces, all norms are equivalent. Let
us test this for a subset of all possible norms on Rn: Show that there exist constants 0 < c12 ≤ C12 <∞ so
that

c12‖x‖l1 ≤ ‖x‖l2 ≤ C12‖x‖l1

for all vectors x ∈ Rn. In other words, that the l1 and l2 norms on Rn are “equivalent”.
Then show the same for the l2 and l∞ norms: Show that there exist constants 0 < c2∞ ≤ C2∞ < ∞ so

that

c2∞‖x‖l2 ≤ ‖x‖l∞ ≤ C2∞‖x‖l2

for all vectors x ∈ Rn.
Combine these estimates to show that the l1 and the l∞ norms are equivalent. (20 points)

Problem 2 (Equivalence of norms on the space of polynomials). Consider the (n+ 1 dimensional)
space of polynomials of degree at most n:

X :=

{
u : [0, 1]→ R : u =

n∑
k=0

anx
n

}
.

Define on this space the following norms:

• ‖u‖1 = maxx∈[0,1] |u(x)|,

• ‖u‖2 = maxx∈[0,1] |u(x)|+ maxx∈[0,1] |u′(x)|,

• ‖u‖3 =
(∫ 1

0
|u(x)|2 dx

)1/2
.

(You will notice that these are the L∞, W 1,∞, and L2 norms when taking into account that the members of X
are all functions that are continuous and continuously differentiable.) Then answer the following questions:

(a) For each of these three norms, show that it is indeed a norm, i.e., that it satisfies the norm axioms.

(b) Show that all of these norms are equivalent on X – as they ought to be because the space X is finite
dimensional.

(20 points)
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Problem 3 (Equivalence of norms on infinite dimensional spaces). Consider the (infinite dimen-
sional) vector space C1((0, 1)). Define on this space the same three norms as before:

• ‖u‖1 = maxx∈[0,1] |u(x)|,

• ‖u‖2 = maxx∈[0,1] |u(x)|+ maxx∈[0,1] |u′(x)|,

• ‖u‖3 =
∫ 1

0
|u(x)|2 dx.

Then answer the following questions:

(a) For each of these three norms, show that it is indeed a norm on X, i.e., that it satisfies the norm
axioms. If you have shown this in sufficient generality in the previous problem, you can just refer to
that solution; otherwise, you will have to generalize the arguments to the larger space C1.

(b) Are any of these norms equivalent to each other? If you can’t show that they are, demonstrate that
they are not equivalent by showing that no constants 0 < c ≤ C < ∞ can exist as are necessary for
equivalence of norms.

(20 points)

Problem 4 (Membership in W k,p). Think about singular functions u : B1(0) ⊂ Rd → R∪{±∞} of the
form

u(x) =
1

‖x‖s

with s > 0.
For given values of the space dimension d ≥ 1, the degree k ≥ 0, and the exponent 1 ≤ p ≤ ∞, state for

which values s the function satisfies u ∈W k,p(B1(0)).
The spaces Hk = W k,2 have special importance in the theory of partial differential equations. Does the

space H1 = W 1,2 contain any singular functions with s > 0 for d = 1? For d = 2? For d > 3? How about
the space H2 = W 2,2? (20 points)

Problem 5 (Weak derivatives and membership in W 1,2). We saw in class that the discontinuous
function of one argument,

u(x) =

{
−1 if x < 0

0 if x ≥ 0

does not have a weak derivative.
But how about the function u : R2 → R of two arguments,

u(x) = sin(arctan(x2/x1))

that is discontinuous at the origin? Can you guess a weak gradient for this function u (which is of course a
two-dimensional vector field) and prove that it really is the weak gradient?

If so, what spaces W 1,p(B1(0)) is u in if we restrict it to the unit ball in R2?
(Hint: Plot the function. Then think about whether there is possibly a coordinate system better suitable

to the task.) (20 points)
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