
MATH 620: Variational Methods and Optimization I
Instructor: Prof. Wolfgang Bangerth

Weber 214
bangerth@colostate.edu

Lectures: Engineering E 206, Mondays/Wednesdays/Fridays, 12-12:50pm
Office hours: Wednesdays, 1-2pm; or by appointment.

Homework assignment 3 – due Friday 10/12/2018

Problem 1 (Euler-Lagrange equations). We have proven rigorously that any sufficiently smooth min-
imizer (say, if the minimizer happens to be in C2) of the functional

I(u) =

∫ b

a

f(x, u(x), u′(x)) dx

has to satisfy the Euler-Lagrange equations

fu(x, u(x), u′(x)) =
d

dx
fξ(x, u(x), u′(x))

for all x ∈ (a, b).
The energy related to the vertical deflection of a thin (one-dimensional) beam subject to a vertical gravity

field with strength g is given by

I(u) =

∫ b

a

[
µ
(√

1 + u′(x)2 − 1
)
− gu(x)

]
dx,

where µ is related to the elasticity constants of the material.

(a) Derive the Euler-Lagrange equations (including boundary conditions) for u(x) for this problem if you
try to minimize the energy over the set of functions

D :=
{
ϕ ∈ C2 : ϕ(a) = 1, ϕ(b) = 1

}
.

(b) Can you prove that the solution ū of the (Euler-Lagrange) differential equations is the unique minimizer
of I(u)?

(25 points)

Problem 2 (Euler-Lagrange equations). In general, the Euler-Lagrange equations will be a (system
of) nonlinear ordinary differential equation. Most often, they will not be exactly solvable. But occasionally,
we can solve simplified problems.

If you take Problem 1, consider the case of stiff materials that do not deform very much. In that case, u′

will be small, and we can use the approximation√
1 + y ≈ 1 +

1

2
y.

(This is just Taylor expansion around y = 0.) Use this to define an approximate energy functional Ĩ(u).

(a) Derive the Euler-Lagrange equations (including boundary conditions) for u(x) for this approximate
problem with the same D as before.
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(b) Can you prove that the solution ū of the (Euler-Lagrange) differential equations is the unique minimizer
of I(u)?

(c) Actually solve this problem, i.e., find ū that satisfies the Euler-Lagrange equations.

(20 points)

Problem 3 (The brachystochrone problem). We have started the semester by considering Newton’s
minimal resistance problem and Bernoulli’s brachystochrone problem (the “bead on a wire”). The former is
a bit more complicated because the right integration bound b depends on the solution. But for the former,
the case is easy: We have

I(u) =

∫ L

0

√
1
2 (1 + u′(x)2)

gH − gu(x)
dx

and

D :=
{
ϕ ∈ C2 : ϕ(0) = H,ϕ(b) = 0.

}
State the Euler-Lagrange equations and boundary conditions any sufficient smooth minimizer ū would

have to satisfy. Is the solution unique? (15 points)

If you can, also solve the Euler-Lagrange equations. The solution can of course be found on the internet
or in any number of books, but if you want to get these bonus points, you will need to show step by step
how you solve the equations – this is going to be non-trivial. (10 bonus points)

Problem 4 (Multiple dimensions). Everything we have done in class was based on functions u(x) of a
single argument x ∈ [a, b] ⊂ R. But in reality, it is not very difficult to derive the same kind of Euler-Lagrange
equations also for higher dimensional functions u(x), x ∈ Ω ⊂ Rn.

To this end, let us assume that we want to find a minimizer of

I(u) =

∫
Ω

f(x, u(x),∇u(x)) dnx

and

D :=
{
ϕ ∈ C2(Ω) : ϕ(x) = g(x) ∀x ∈ ∂Ω

}
.

Go through the one-dimensional derivation of the Euler-Lagrange equations and adapt it as appropriate to
derive the (now partial) differential equation any sufficiently smooth minimizer ū ∈ D has to satisfy. State
both the equations and boundary conditions. (25 points)

Problem 5 (Multiple dimensions). The generalization to higher dimensions of the first problem is to
look for the minimizer of the functional

I(u) =

∫
Ω

[
µ
(√

1 + |∇u(x)|2 − 1
)
− gu(x)

]
dnx,

State the Euler-Lagrange equations for this problem.
Next, apply the same simplification we considered in Problem 2 and again derive the corresponding

Euler-Lagrange equations.

(15 points)
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Bonus problem (Subdifferentials). In class and in the previous homework, we found that the subdiffer-
entials of the functions f1(x) = ‖x‖1, f2(x) = ‖x‖2, and f∞(x) = ‖x‖∞ at the origin, i.e., ∂f(0), are exactly
the unit balls defined by the l∞, l2, and l1 norms. This suggests the conjecture that the subdifferential ∂fp(0)

of fp(x) = ‖x‖p = (
∑
i |xi|p)

1/p
might be the unit ball {v ∈ Rn : ‖v‖q ≤ 1}, where q depends on p so that

they satisfy 1
p + 1

q = 1.

Prove or disprove this. (10 bonus points)
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