
MATH 620: Variational Methods and Optimization I
Instructor: Prof. Wolfgang Bangerth

Weber 214
bangerth@colostate.edu

Lectures: Engineering E 206, Mondays/Wednesdays/Fridays, 12-12:50pm
Office hours: Wednesdays, 1-2pm; or by appointment.

Homework assignment 1 – due Monday 9/17/2018

Problem 1 (Lower semicontinuous functions). In class, we proved that any continuous function
f : D ⊂ Rn → R has (at least one) local minimum in D if D is compact. We also convinced ourselves
that all three conditions – boundedness and closedness of D (which together constitute compactness in finite
dimensional spaces) and continuity of f – were in fact necessary.

a) Show examples of domains D and functions f that violate one of the three conditions and that do not
have a minimum.

b) In truth, the statement above is not correct. Continuity of the function is not necessary, even though
it is easy to find discontinuous functions that do not have a minimum on a compact set D. Indeed, it
is not difficult to find discontinuous functions that do have a minimum on a compact set D. Give a
one and a two-dimensional example.

c) The resolution to this conundrum is that obviously the set of continuous functions is too small, and the
set of potentially discontinuous functions too large. We need to seek another set of function that lies
between. This set is the class of lower semicontinuous functions. A function f : D ⊂ Rn → R is called
lower semicontinuous at x ∈ D if f(x) ≤ limk→∞ f(xn) for all sequences xn → x; more generally, f
is called lower semicontinuous if it is lower semicontinuous at all x ∈ D. (Obviously, if the statement
holds with equality, then the function is continuous; furthermore, a function that is both lower and
upper semicontinuous is of course also continuous.)

Repeat the proof of the existence of a minimum for functions that only satisfy this weaker condition.
Point out, in particular, where the proof deviates or is different from the one we have seen in class.

(40 points)

Problem 2 (Compactness in finite and infinite dimensional spaces).

a) We have sketched in class how one shows that a bounded and closed set in a finite dimensional space
Rn is compact. (Here, let us use the “sequential compactness” we defined in class, rather than the
topological one mentioned as an aside.) Work out the proof of this statement in detail and rigor. You
will, in particular, need to work out the volume of the sets we consider in each step of the iteration, and
how that affects the possible distance of any two points in it; then use this maximal possible distance
rigorously to establish convergence.

b) Show in detail and rigor why this proof does not work in infinite dimensional spaces.

c) One could think of other ways of proving the statement, but fundamentally they fail because of a
slightly surprising fact: The volume of a ball of radius 1 goes to zero as the dimension goes to infinity.
In other words, ensuring that a sequence is entirely enclosed in a sequence of smaller and smaller
volumes does not guarantee that it actually converges because that no longer implies that points are
closer and closer to each other in large space dimensions.

Confirm that the fact above is indeed true. You could look up the volume of the unit ball in n space
dimension, but showing some kind of proof would be better :-) (30 points)
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Problem 3 (Compactness in finite and infinite dimensional spaces). You have seen two examples
of sequences in infinite spaces that are enclosed in bounded and closed sets but do not converge. One of
them was in the “space of sequences” `2,

`2 :=

x = (x1, x2, . . .) : ‖x‖`2 =

( ∞∑
i=1

|xi|2
)1/2

<∞

 ,

the other in the “space of square integrable functions”,

L2 :=

{
f : ‖f‖L2

=

(∫ 1

0

|f(x)|2
)1/2

<∞

}
.

Try to come up with another non-convergent sequence in the set of operators defined as follows: Let
X = L∞ be the space of all functions that are bounded on the interval [0, 1]:

L∞ :=

{
f : ‖f‖L∞ = sup

0≤x≤1
|f(x)| <∞

}
.

Then consider linear operators A : X → X that somehow map on this space and define the space A of such
operators as follows:

A :=

{
A : X → X : A is linear, ‖A‖A = sup

f∈L∞

‖Af‖L∞

‖f‖L∞
<∞

}
.

Because we have assumed that these operators are linear, we can equivalently define this set as

A :=

{
A : X → X : A is linear, ‖A‖A = sup

f∈L∞,‖f‖L∞=1

‖Af‖L∞ <∞

}
.

In other words, A consists of those operators that when given a bounded function returns a bounded function.
Next, we have to consider a bounded and closed subset D of this space A. Let us choose the unit ball,

D := {A : X → X : A is linear, ‖A‖A ≤ 1} .

That is, D are exactly those operators A that map a bounded function f to another function Af whose
amplitude (the supremum of its absoute value) is at most as large as that of f .

Your task is to construct a sequence of operators {An} ⊂ D for which there is no subsequence that
converges – i.e., that illustrates that the set D is not compact.

(To this end, we need to define what it means for a sequence Ak to converge to a postulated limit
operator A ∈ A that may or may not be in D. We do this in the obvious way: We say that limAk → A if
limk→∞ ‖A−Ak‖A = 0, or in other words

sup
f∈L∞,‖f‖L∞=1

‖Af −Akf‖L∞ → 0.

Conversely, to prove that Ak 6→ A, all you need is to find a particular f∗ with ‖f∗‖L∞ = 1 (i.e., f∗ has
magnitude one) for which ‖Af∗ − Akf

∗‖L∞ 6→ 0. Of course, we really don’t quite know yet whether such
a limit operator A exists, so you may want to look at conditions on Akf that guarantee that the sequence
converges. In particular, Ak converges if for every ε > 0 there exists N <∞ so that ‖Am−An‖A < ε for all
n,m ≥ N .)

(20 points)
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