MATH 545: Partial Differential Equations I

Instructor: Prof. Wolfgang Bangerth
Weber 214
bangerth@colostate.edu

Lectures: Engineering E 206, Mondays/Wednesdays/Fridays, 10-10:50am
Office hours:  Wednesdays, 1-2pm; or by appointment.

Homework assignment 6 — due Friday 11/30/2018

Problem 1 (The wave equation via a Fourier series). We have seen two different ways in class how
to solve the one-dimensional wave equation. Consider the following setting on the domain Q = (0,4):

9? 02
@u(z,t) - CQWu(x,t) =0 forall z € Q,t >0,
x
u(z,0) = h(z) for all z € Q,
%u(m, 0)=0 for all x € Q,
u(0,t) =0 for all ¢ > 0,
u(4,t) =0 for all t > 0,

where we will choose the initial displacement h(x) as

1 if 1
h(x):{ mr <l,

0 ofl <x<4.

Compute the solution of this problem via the Fourier series representation we have derived in class, i.e.,
find the coefficients A,,, B,, so that

oo
Z (A, cos(wnt) + By, sin(wyt)) sin %,

nmc

where w,, = “7¢ and so that u(z,t) solves the problem above. (20 points)

Problem 2 (The wave equation via a Fourier series). For the solution you have found above, create
computer-generated plots of uy(z,t) at ¢ = 1,2,6,10,20 and for N = 10,50, 100, where uy is the solution
that takes into account only the first IV Fourier terms. That is,

N
z:: (A, cos(wnt) + By, sin(wyt)) sin (%),

with A,, B,, computed in Problem 1. For simplicity, use ¢ = 1. (But you can also play with different values
for ¢ to see how that affects the solution.) (20 points)

Problem 3 (The wave equation via d’Alembert’s solution). Take the same problem again and solve
it via the approach by d’Alembert. That is, create the necessary extension %y to all of R of the initial
condition g that is only defined on © = (0,4). Create computer-generated plots of the solution u(z,t) you
get from @ at times ¢t = 1,2,6,10,20 on Q. Again, use ¢ = 1 or another value of your choice (but so that
you can compare with the solution plotted in the previous problem). (20 points)
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Problem 4 (Wave equation). The total kinetic and potential energy of a vibrating string of length L

at any given time ¢ is
1 L ou(x,t) ? o5 [ Ou(x,t) ?

Show that the energy is conserved, i.e. that E(t1) = E(t2) for any two time instants ¢y, ¢ if u(z,t) satisfies
the homogenous wave equation

0?u(z,t) _ 2 0u(z,t)

512 52 = 0, in (0,L) x (0,7),
u(0,t) =0 for t € [0,T],
u(L,t) =0 for t € 0,77,

plus initial conditions that can be arbitrary here.

Hint: First note that E(t3) — E(t1) = f:f %E(t) dt. Then derive what form %E(t) has by direct
differentiation under the integral in the definition of F(t). Then integrate by parts in space and time as
necessary and see if you can cancel terms using the wave equation and its boundary values as stated above.

(10 points)

Problem 5 (Self-adjoint operators). We say that a (real) matrix A € R™*" is self-adjoint if 27 (Ay) =
(Az)Tz for all vectors z,y € R™. If we write the scalar product between two vectors as (z,y) = 27y =z -y,
then this means that A is self-adjoint if (z, Ay) = (Ax,y). For real matrices this implies that A is self-adjoint
if and only if it is symmetric. (If the matrix had complex entries, the condition would be that A needs to
be “Hermitian”.)

For operators, the situation is essentially similar. Ignoring minor subtleties, we say that an operator L
acting on functions is self-adjoint if

/v(ac) (Lw(zx)) dz :/ (Lv(z)) w(z)dz
Q Q
for all functions v, w in the domain of L. An important aspect to take into account for operators is that we
need to carefully specify this domain of the operator.
Show that the following operators are indeed self-adjoint:

e L = —A on a domain Q@ C R™ when applied to functions v,w : @ — R that satisfy v|pgo = 0 and
similarly for w.

e L = —A? on a domain 2 C R™ when applied to functions v,w : Q@ — R that satisfy v|pq = 0,
n - Vou|pq = 0 and similarly for w.

o L =-V-(AV) where A € R"™™ is a symmetric matrix, Q C R", and where L is applied to functions
v,w : Q — R that satisfy v|sq = 0 and similarly for w.

Also show that the operator L = b - V with a fixed vector b € R™ (i.e., the derivative in direction of b)
is in general not self-adjoint.

In all cases where this is necessary, you can assume that functions are smooth enough so that integration
by parts is allowed. (10 points)


https://en.wikipedia.org/wiki/Self-adjoint_operator#The_distinction_between_symmetric_and_self-adjoint_operators

Problem 6 (Eigenfunctions on the square). We have seen in class that the eigenfunctions and eigen-
values of the Laplacian are quite useful in many contexts. Find those functions ¢(z,y) that satisfy

—A¢($, y) = >\¢($,y), in Qv
u(z,y) =0 on 052,

where we choose Q = (0,L) x (0, H), i.e., a rectangle. Because of the special structure of the domain, you
may want to find these functions by making the assumption that they can be written as ¢(z,y) = X (2)Y (y),
and then work out what X (x) and Y (y) must be.

Let us assume that you have found a number of such functions and that you somehow indexed them as
oK, k =1,2,3,.... Similarly, let us call the corresponding eigenvalues A\p. Then verify the claims we have
made in class for this special domain, namely:

e There are infinitely many such eigenfunction/eigenvector pairs.

e All eigenvalues are positive.

The eigenvalues grow without bound, i.e. Ay — 0o as k grows.

The eigenfunctions are mutually orthogonal, i.e.,

/Q¢>n(a:,y)¢m(:r,y) dzdy =0

for n # m. (Because we can multiply any eigenfunction by a scalar and it remains an eigenfunction,
it is then possible to normalize them so that in addition to the orthogonality condition above, we also
have [, ¢n(z,y)? dedy =1.)

(20 points)



