MATH 545: Partial Differential Equations I

Instructor: Prof. Wolfgang Bangerth
Weber 214
bangerth@colostate.edu
Lectures: Engineering E 206, Mondays/Wednesdays/Fridays, 10-10:50am
Office hours: Wednesdays, $1-2 \mathrm{pm}$; or by appointment.

Homework assignment 5 - due Friday 11/9/2018

Problem 1 (Solution of the heat equation on a rectangle). If the domain on which we want to solve the heat equation is a rectangle, i.e., $\Omega=(0, L) \times(0, H) \subset \mathbb{R}^{2}$, then we had derived that the solution of the heat equation with zero boundary values,

$$
\begin{aligned}
\frac{\partial}{\partial t} u(x, y, t)-k \Delta u(x, y, t) & =0 \\
& \text { for all }(x, y) \in \Omega, t>0 \\
u(x, y, t)=0 & \text { for all }(x, y) \in \partial \Omega, t>0
\end{aligned}
$$

has the general form of a superposition of solutions we have found through the separation of variables approach. Namely, that the solution has the form

$$
u(x, y, t)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} A_{n m} e^{-\left(\frac{n^{2} \pi^{2}}{L^{2}}+\frac{m^{2} \pi^{2}}{H^{2}}\right) t} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{H}\right)
$$

Compute what values the coefficients $A_{n m}$ must take on so that the solution $u(x, y, t)$ satisfies the following initial conditions:

$$
u(x, y, 0)=u_{0}(x, y)= \begin{cases}0 & \text { if } x<\frac{L}{2} \text { and } y<\frac{H}{2}, \text { or if } x \geq \frac{L}{2} \text { and } y \geq \frac{H}{2} \\ 1 & \text { otherwise }\end{cases}
$$

(20 points)

Problem 2 (Plotting 2d solutions). Given what you found in the previous problem, show a computer plot of $u(x, y, t)$ for $t=0$ (and verify that it matches the initial conditions) as well as for $t=0.1, t=0.5$, $t=1, t=10$.

Use $L=2, H=1, k=1$ for the constants that appear in the problem.
(20 points)

Problem 3 (Fourier series). Derive the Fourier series on $[-\pi, \pi]$ of the function $f(x)=x$. From this series, derive the Fourier series of $F(x)=x^{2} / 2$ without using the formulas $\frac{1}{L} \int_{-L}^{L} F(x) \cos n x d x$ (and similar for the sine terms) to compute the coefficients A_{0}, A_{n}, B_{n} of the second series.
(10 points)

Problem 4 (Fourier series). Derive the Fourier series on $[-\pi, \pi]$ of the function $F(x)=x$ (it is the same as in the previous problem). State whether you can derive the Fourier series of the function $f(x)=1$ from it by differentiating each term in the series of $F(x)$ individually. State the Fourier series of $f(x)$.
(10 points)

Problem 5 (Fourier series). Generate computer plots of the partial sums $\bar{f}_{10}(x)=a_{0}+\sum_{n=1}^{10} a_{n} \cos (n x)+$ $\sum_{n=1}^{10} b_{n} \sin (n x)$ and $\bar{F}_{10}(x)=A_{0}+\sum_{n=1}^{10} A_{n} \cos (n x)+\sum_{n=1}^{10} B_{n} \sin (n x)$ consisting of the first 10 terms for the Fourier series of the functions $f(x)=1, F(x)=x$, where the Fourier series is calculated over the interval $-\pi \ldots \pi$. Plot these Fourier series on the larger interval $-2 \pi \ldots 2 \pi$.

Also generate a plot of the partial sum $g_{10}(x)=\sum_{n=1}^{10}-A_{n} n \sin (n x)+\sum_{n=1}^{10} B_{n} n \cos (n x)$, using the coefficients A_{n}, B_{n} of the Fourier series of $F(x)=x$ (this is the term-by-term differentiated Fourier series of $F(x)$ for which one may hope that it matches $f(x)$.) Repeat this last part with $20,30,50,100$ terms instead of just 10. Do you think this series converges?

Problem 6 (Fourier series). Calculate or look up the Fourier series on the interval $-\pi \ldots \pi$ of the function

$$
f(x)=\left\{\begin{array}{c}
1 \text { for } x>0 \\
-1 \text { for } x \leq 0
\end{array}\right.
$$

Generate plots of the partial sums $f_{N}(x)=A_{0}+\sum_{n=1}^{N} A_{n} \cos (n x)+\sum_{n=1}^{N} B_{n} \sin (n x)$ consisting of the first N terms, for each value $N=2,5,10,20,50$. Try to determine the maximal difference $\left|f(x)-f_{N}(x)\right|$ numerically or graphically. We know that for $N \rightarrow \infty, f_{N}(x) \rightarrow f(x)$ almost everywhere; is this consistent with your results?
(20 points)

