MATH 545: Partial Differential Equations I

Instructor: Prof. Wolfgang Bangerth
Weber 214
bangerth@colostate.edu
Lectures: Engineering E 206, Mondays/Wednesdays/Fridays, 10-10:50am
Office hours: Wednesdays, $1-2 \mathrm{pm}$; or by appointment.

Homework assignment 1 - due Monday 9/17/2018

Problem 1 (Bivariate analysis). Here is a picture of the large radio telescope in Arecibo, Puerto Rico:

Impose a coordinate system with the origin at the center of the dish and such that the positive x-axis runs from the origin in the direction of the tower in front. Let Ω be the domain in x - y-space occupied by the dish. Let $H(x, y)$ be the height of the telescope's surface above the level defined by the circular rim (the surface is of course below the rim, so $H(x, y) \leq 0)$.
a) Plot the coordinate system (i.e. x - and y-axes) into the picture. Indicate $H(0,0)$.
b) Describe in words the meaning of the following quantities defined on the entire domain:

$$
\begin{array}{lrr}
\frac{\partial H(x, y)}{\partial x} & \frac{\partial H(x, y)}{\partial y} & \nabla H(x, y) \\
\int_{\Omega} H(x, y) d x d y & \int_{-R}^{R} H(x, 0) d x & \nabla H(0,0) \\
\frac{\partial^{2} H(x, y)}{\partial x^{2}} & \frac{\partial^{2} H(x, y)}{\partial y^{2}} & \Delta H(x, y)
\end{array}
$$

For the terms on the last line, also state the sign for the function $H(x, y)$.
c) Describe in words the meaning of the following quantities defined on the boundary of the domain and state the sign of quantities where possible:

$$
\begin{array}{ll}
\mathbf{n} & \frac{\partial H(x, y)}{\partial n}=\mathbf{n} \cdot \nabla \partial H(x, y) \\
\int_{\partial \Omega} H(x, y) d s & \int_{\partial \Omega} \frac{\partial H(x, y)}{\partial n} d s
\end{array}
$$

(20 points)

Problem 2 (Integration by parts 1). Calculate the following integrals using integration by parts:
a) $\int_{0}^{\pi} x \sin x d x$
b) $\int_{0}^{1} x e^{x} d x$
c) $\int_{0}^{1} x^{3} e^{x} d x$
(15 points)
Problem 3 (Integration by parts 2). Let $f(x, y)=x^{2}+y^{2}$ and $g(x, y)=\sin (x y)$. State which of the following statements is true and why or why not:
a) $\int_{-\pi}^{\pi} f(x, 0) g(x, 0) d x=0$
b) for every y there holds

$$
\int_{-1}^{1} \frac{\partial f(x, y)}{\partial x} g(x, y) d x=-\int_{-1}^{1} \frac{\partial g(x, y)}{\partial x} f(x, y) d x+f(1, y) g(1, y)-f(-1, y) g(-1, y)
$$

c) for every y there holds (note the signs)

$$
\int_{-1}^{1} \frac{\partial f(x, y)}{\partial x} g(x, y) d x=\quad+\int_{-1}^{1} \frac{\partial g(x, y)}{\partial x} f(x, y) d x-f(1, y) g(1, y)+f(-1, y) g(-1, y)
$$

d) for every x there holds

$$
\int_{-1}^{1} \frac{\partial f(x, y)}{\partial x} g(x, y) d y=-\int_{-1}^{1} \frac{\partial g(x, y)}{\partial x} f(x, y) d y+f(x, 1) g(x, 1)-f(x,-1) g(x,-1)
$$

(10 points)
Problem 4 (Divergence theorem). For the simple case of the unit square $\Omega=[0,1]^{2}$, show that the divergence theorem

$$
\int_{\Omega} \operatorname{div} \mathbf{u} d x d y=\int_{\partial \Omega} \mathbf{n} \cdot \mathbf{u} d l
$$

holds for all sufficiently smooth vector fields \mathbf{u}. Hint: Use (i) that the integral over Ω is really a double integral over $0 \leq x, y \leq 1$, (ii) that the expression div \mathbf{u} has two terms, (iii) that each of these expressions can individually be integrated by parts in either the x or y direction, and (iv) that in the surface integral on the right you can express the normal vector explicitly on each part of the boundary.
(20 points)

Problem 5 (More integration by parts). You have seen the general form of the higher dimensional integration by parts theorem: For a (sufficiently smooth) vector field $\vec{\phi}(\mathbf{x})$ and a scalar field $u(\mathbf{x})$ both defined on a domain $\Omega \subset \mathbb{R}^{n}$, the following is true:

$$
\int_{\Omega} u(\mathbf{x}) \operatorname{div} \vec{\phi}(\mathbf{x}) d x=-\int_{\Omega} \nabla u(\mathbf{x}) \cdot \vec{\phi}(\mathbf{x}) d x+\int_{\partial \Omega} u(\mathbf{x}) \vec{\phi}(\mathbf{x}) \cdot \vec{n}(\mathbf{x}) d x
$$

This identity is true for any space dimension n, so in particular it must be true for $n=1$.
Argue how you can derive the identity

$$
\int_{a}^{b} u^{\prime} v d x=-\int_{a}^{b} u v^{\prime} d x+u(b) v(b)-u(a) v(a)
$$

from it by thinking about what the divergence, the gradient, the vector field $\vec{\phi}$, and the normal vector \vec{n} look like in the 1d case.
(10 points)
Problem 6 (Solutions of the Laplace equation). The steady state temperature in a one-dimensional object without heat sources is described by the following equation, as derived in class:

$$
-\frac{d}{d x}\left[k(x) \frac{d}{d x} T(x)\right]=0
$$

for all $x \in \Omega \subset \mathbb{R}$, and where $k(x)$ is the heat conductivity coefficient. This equation needs to be augmented by appropriate boundary conditions.

Solve this equation analytically for the case where $\Omega=(0, L)$ with $L=10, T(0)=1, T(L)=2$, and for the following two cases:

- $k(x)=1$, i.e., the one-dimensional object is homogenous,
- $k(x)=1$ for $x<L / 2$ and $k(x)=2$ for $x \geq L / 2$.

In both cases plot the solution and interpret it.
(25 points)

