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Part 1

Examples of optimization 
problems
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Let X be a Banach space;  let 
    f : X→R{+} 
    g: X→Rne

    h: X→Rni

be functions on X, find   x ∈ X  so that

Questions: Under what conditions on X, f, g, h can we 
guarantee that (i) there is a solution; (ii) the solution is unique; 
(iii) the solution is stable.

Mathematically speaking:

     f (x)  →  min!
g (x)  =  0
h(x)  ≥  0

What is an optimization problem?
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What is an optimization problem?

● x={u,y} is a set of design and auxiliary variables that
completely describe a physical, chemical, 
economical model; 

● f(x) is an objective function with which we measure how
good a design is;

● g(x) describes relationships that have to be met exactly
(for example the relationship between y and u)

● h(x) describes conditions that must not be exceeded

Then find me that x for which

Question: How do I find this x?

In practice:

     f ( x)  →  min!
g (x)  =  0
h( x)  ≥  0
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What is an optimization problem?

Optimization problems are often subdivided into classes:

Linear    vs.   Nonlinear 

Convex   vs.   Nonconvex

Unconstrained   vs.   Constrained          

Smooth   vs.   Nonsmooth

With derivatives   vs.   Derivativefree         

Continuous   vs.   Discrete          

Algebraic   vs.   ODE/PDE    

        

Depending on which class an actual problem falls into, there are 
different classes of algorithms.
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Examples

Linear and nonlinear functions f(x) 
on a domain bounded by linear inequalities
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Examples

Strictly convex, convex, and nonconvex functions f(x)



55               Wolfgang Bangerth

Another non-convex function with many (local) optima.
We may want to find the one global optimum.

Examples
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Optima in the presence of (nonsmooth) constraints.

Examples
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Smooth and non-smooth nonlinear functions.

Examples
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Mathematical description:
x={u,y}: u are the design parameters (e.g. the shape of the car)

y is the flow field around the car

f(x): the drag force that results from the flow field

g(x)=y-q(u)=0:
constraints that come from the fact that there is a flow
field y=q(u) for each design. y may, for example, satisfy
the Navier-Stokes equations

Applications: The drag coefficient of a car
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Inequality constraints:
(expected sales price – profit margin) - cost(u) ≥ 0

volume(u) – volume(me, my wife, and her bags) ≥ 0

material stiffness * safety factor
- max(forces exerted by y on the frame)  ≥ 0

legal margins(u) ≥ 0

Applications: The drag coefficient of a car
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Analysis:
linearity: f(x) may be linear

g(x) is certainly nonlinear (Navier-Stokes equations)
h(x) may be nonlinear

convexity: ??

constrained: yes

smooth: f(x) yes
g(x) yes
h(x) some yes, some no

derivatives: available, but probably hard to compute in practice

continuous: yes, not discrete

ODE/PDE: yes, not just algebraic

Applications: The drag coefficient of a car
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Remark:

In the formulation as shown, the objective function was of the form

f(x) = c
d
(y)

In practice, one often is willing to trade efficiency for cost, i.e. we are 
willing to accept a slightly higher drag coefficient if the cost is smaller. 
This leads to objective functions of the form

f(x) = c
d
(y) + a cost(u)

or

f(x) = c
d
(y) + a[cost(u)]2

Applications: The drag coefficient of a car
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Applications: Optimal oil production strategies
Permeability field

Mathematical description:
x={u,y}: u are the pumping rates at injection/production wells

y is the flow field (pressures/velocities)

f(x): the cost of production and injection minus sales price of
oil integrated over lifetime of reservoir (or -NPV)

g(x)=y-q(u)=0:
constraints that come from the fact that there is a flow
field y=q(u) for each u. y may, for example, satisfy
the multiphase porous media flow equations

Oil saturation
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Applications: Optimal oil production strategies

Inequality constraints h(x)≥0:

U
imax

-u
i
 ≥ 0 (for all wells i):

Pumps have a maximal pumping rate/pressure

produced_oil(T)/available_oil(0) – c ≥ 0:
Legislative requirement to produce at least 
a certain fraction

c - water_cut(t)  ≥ 0  (for all times t):
It is inefficient to produce too much water

pressure – d ≥ 0 (for all times and locations):
Keeps the reservoir from collapsing
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Applications: Optimal oil production strategies

Analysis:
linearity: f(x) is nonlinear

g(x) is certainly nonlinear
h(x) may be nonlinear

convexity: no

constrained: yes

smooth: f(x) yes
g(x) yes
h(x) yes

derivatives: available, but probably hard to compute in practice

continuous: yes, not discrete

ODE/PDE: yes, not just algebraic
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Applications: Switching lights at an intersection

Mathematical description:
x={T, t

i

1, t
i

2}: round-trip time T for the stop light system, 

switch-green and switch-red times for all lights i

f(x): number of cars that can pass the intersection per
hour; 

Note: unknown as a function, but we can measure it
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Applications: Switching lights at an intersection

Inequality constraints h(x)≥0:

300 – T ≥ 0:
No more than 5 minutes of round-trip time, so that people
don't have to wait for too long

t
2i
-t

1i
 – 5 ≥ 0    (for all lights i):

At least 5 seconds of green for everyone

t
1(i+1)

-t
2i
 – 5 ≥ 0:

At least 5 seconds of all-red between different greens
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Applications: Switching lights at an intersection

Analysis:

linearity: f(x) ??
h(x) is linear

convexity: ??

constrained: yes

smooth: f(x) ??
h(x) yes

derivatives: not available

continuous: yes, not discrete

ODE/PDE: no
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Applications: Trajectory planning

Mathematical description:
x={y(t),u(t)}: position of spacecraft and thrust vector at time t

minimize fuel consumption

Newton's law

Do not get too close to the sun

Only limited thrust available

m ÿ t −u t =0

f  x=∫0

T
∣u t ∣dt

∣y t ∣−d 0≥0

umax−∣u t ∣≥0
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Applications: Trajectory planning

Analysis:

linearity: f(x) is nonlinear
g(x) is linear
h(x) is nonlinear

convexity: no
constrained: yes
smooth: yes, here
derivatives: computable
continuous: yes, not discrete

ODE/PDE: yes

Note: Trajectory planning problems are often called optimal 
control.
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Applications: Data fitting 1

Mathematical description:
x={a,b}: parameters for the model 

f(x)=1/N ∑
i
 |y

i
-y(t

i
)|2:

mean square difference between predicted value
and actual measurement

y t =
1
a

log cosh ab t 
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Applications: Data fitting 1

Analysis:
linearity: f(x) is nonlinear

convexity: ?? (probably yes)

constrained: no

smooth: yes

derivatives: available, and easy to compute in practice

continuous: yes, not discrete

ODE/PDE: no, algebraic
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Applications: Data fitting 2

Mathematical description:
x={a,b}: parameters for the model 

f(x)=1/N ∑
i
 |y

i
-y(t

i
)|2:

mean square difference between
predicted value and actual measurement

y t =atb
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Applications: Data fitting 2

Analysis:
linearity: f(x) is quadratic

Convexity: yes

constrained: no

smooth: yes

derivatives: available, and easy to compute in practice

continuous: yes, not discrete

ODE/PDE: no, algebraic

Note: Quadratic optimization problems (even with linear 
constraints) are easy to solve!
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Applications: Data fitting 3

Mathematical description:
x={a,b}: parameters for the model 

f(x)=1/N ∑
i
 |y

i
-y(t

i
)|:

mean absolute difference between predicted
value and actual measurement

y t =atb
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Applications: Data fitting 3

Analysis:
linearity: f(x) is nonlinear

Convexity: yes

constrained: no

smooth: no!

derivatives: not differentiable

continuous: yes, not discrete

ODE/PDE: no, algebraic

Note: Non-smooth problems are really hard to solve!
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Applications: Data fitting 3, revisited

Mathematical description:
x={a,b, s

i
}: parameters for the model 

“slack” variables s
i

f(x)=1/N ∑
i
 s

i
  →  min!

s
i
 - |y

i
-y(t

i
)| ≥ 0

y t =atb
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Applications: Data fitting 3, revisited

Analysis:
linearity: f(x) is linear, h(x) is not linear

Convexity: yes

constrained: yes

smooth: no!

derivatives: not differentiable

continuous: yes, not discrete

ODE/PDE: no, algebraic

Note: Non-smooth problems are really hard to solve!
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Applications: Data fitting 3, re-revisited

Mathematical description:
x={a,b, s

i
}: parameters for the model 

“slack” variables s
i

f(x)=1/N ∑
i
 s

i
  →  min!

s
i
 - |y

i
-y(t

i
)| ≥ 0 s

i
 - (y

i
-y(t

i
)) ≥ 0

s
i
 + (y

i
-y(t

i
)) ≥ 0

y t =atb
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Applications: Data fitting 3, re-revisited

Analysis:
linearity: f(x) is linear, h(x) is now also linear

Convexity: yes

constrained: yes

smooth: yes

derivatives: yes

continuous: yes, not discrete

ODE/PDE: no, algebraic

Note: Linear problems with linear constraints are simple to 
solve!
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Applications: Traveling salesman

Mathematical description:
x={c

i 
}: the index of the ith city on our trip, i=1...N

f(x)=                  

no city is visited twice (alternatively:               )

Task: Find the shortest tour 
through N cities with mutual 
distances d

ij
.

(Here: the 15 biggest cities of 
Germany; there are 43,589,145,600 
possible tours through all these cities.)

∑i
d ci c i1

ci≠c j    for i≠ j ci c j≥1
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Applications: Traveling salesman

Analysis:
linearity: f(x) is linear, h(x) is nonlinear

Convexity: meaningless

constrained: yes

smooth: meaningless

derivatives: meaningless

continuous: discrete: 

ODE/PDE: no, algebraic

Note: Integer problems (combinatorial problems) are often 
exceedingly complicated to solve!

x∈X⊂{1,2,. .. , N }N
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Part 2

Minima, minimizers, 
sufficient and necessary 

conditions
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Part 3

Metrics of algorithmic 
complexity
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All algorithms to find minima of f(x) do so iteratively:

- start at a point 

- for k=1,2,..., :
      . compute an update direction 

      . compute a step length

      . set

      . set

Outline of optimization algorithms

x0

pk

k

xk xk−1k pk

k k1
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All algorithms to find minima of f(x) do so iteratively:

- start at a point 

- for k=1,2,..., :
      . compute an update direction 

      . compute a step length

      . set

      . set

Questions:

      - If        is the minimizer that we are seeking, 
does                ?

      - How many iterations does it take for                       ?

      - How expensive is every iteration?

Outline of optimization algorithms

x *
xk x *

∥xk−x *∥≤

x0

pk

k

xk xk−1k pk

k k1
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The cost of optimization algorithms is dominated by evaluating 
f(x), g(x), h(x) and derivatives:

● Traffic light example: Evaluating f(x) requires us to sit at an 
intersection for an hour, counting cars

● Designing air foils: Testing an improved wing design in a 
wind tunnel costs millions of dollars.

How expensive is every iteration?
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Example: Boeing wing design

Planes today are 30% more efficient than those developed in 
the 1970s. Optimization in the wind tunnel and in silico made 
that happen but is very expensive.

How expensive is every iteration?

Boeing 767 (1980s)

50+ wing designs 
tested in wind tunnel

Boeing 777 (1990s)

18 wing designs 
tested in wind tunnel

Boeing 787 (2000s)

10 wing designs 
tested in wind tunnel
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Practical algorithms: 

To determine the search direction
● Gradient (steepest descent) method requires 1 evaluation 

of              per iteration
● Newton's method requires 1 evaluation of                and

1 evaluation of                  per iteration

● If derivatives can not be computed exactly, they can be 
approximated by several evaluations of           and

 

To determine the step length
● Both gradient and Newton method typically require several

evaluations of          and potentially             per iteration.

How expensive is every iteration?

pk

k

∇ f ⋅
∇ f ⋅

f ⋅

∇
2 f ⋅

∇ f ⋅

∇ f ⋅f ⋅
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Question: Given a sequence                  (for which we know
that                     ), can we determine exactly how fast the error 
goes to zero?

How many iterations do we need?

xk x *
∥xk−x *∥0

∥x k− x *∥

k
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Definition: We say that a sequence                is of order  s   if

A sequence of numbers             is called of order s if

C  is called the asymptotic constant. We call                gain factor.

Specifically:

 If s=1, the sequence is called linearly convergent.
Note: Convergence requires  C<1. In a singly logarithmic plot, 
linearly convergent sequences are straight lines.

 If s=2, we call the sequence quadratically convergent.

 If 1<s<2, we call the sequence superlinearly convergent.

How many iterations do we need?

xk x *

∥x k− x*∥  ≤   C∥xk−1−x*∥s

ak0

∣ak∣  ≤  C∣ak−1∣
s

C∣ak−1∣
s−1
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Example: The sequence of numbers

a
k
 = 1, 0.9, 0.81, 0.729, 0.6561, ...

is linearly convergent because

with s=1, C=0.9.

Remark 1: Linearly convergent sequences can converge very 
slowly if C is close to 1. 

Remark 2: Linear convergence is considered slow. We will want 
to avoid linearly convergent algorithms.

How many iterations do we need?

∣ak∣  ≤  C∣ak−1∣
s
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Example: The sequence of numbers

a
k
 = 0.1, 0.03, 0.0027, 0.00002187, ...

is quadratically convergent because

with s=2, C=3.

Remark 1: Quadratically convergent sequences can converge 
very slowly if C is large. For many algorithms we can show that 
they converge quadratically if a

0
 is small enough since then

If a
0
 is too large then the sequence may fail to converge since

Remark 2: Quadratic convergence is considered fast. We will 
want to use  quadratically convergent algorithms.

How many iterations do we need?

∣ak∣  ≤  C∣ak−1∣
s

∣a1∣ ≤ C∣a0∣
2   ≤  ∣a0∣

∣a1∣ ≤ C∣a0∣
2   ≥   ∣a0∣
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Example: Compare linear and quadratic convergence

How many iterations do we need?

∥x k− x *∥

k

Linear convergence.

Gain factor C<1
is constant.

Quadratic convergence.

Gain factor                  
becomes better and better!

C∣ak−1∣1
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Summary: 

● Quadratic algorithms converge faster in the limit than 
linear or superlinear algorithms

● Algorithms that are better than linear will need to be 
started close enough to the solution

Algorithms are best compared by counting the number of
● function, 
● gradient, or 
● Hessian evaluations

to achieve a certain accuracy. This is generally a good 
measure for the run-time of such algorithms.

Metrics of algorithmic complexity
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Part 4

Smooth unconstrained 
problems:

Line search algorithms

minimize   f x 
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Smooth problems: Characterization of Optima

Problem: find solution       of

A strict local minimum        must satisfy two conditions:

First order necessary condition: gradient must vanish:

Sufficient condition for a strict minimum:

x *

minimize x  f  x 

x *

∇ f  x*=0

spectrum ∇2 f x *  0
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Basic Algorithm for Smooth Unconstrained Problems

Basic idea for iterative solution                of the problem

Generate a sequence       by

  1.  finding a search direction
  2.  choosing a step length

Then compute the update

Iterate until we are satisfied.

minimize  f x 

x k1=x kk pk

k

pk

x k

x k

x k1

pk

x k x *
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Step 1: Choose search direction

Conditions for a useful search direction:

pk⋅∇ f xk ≤0

Minimization function should 
be decreased in this 
direction:

Search direction should lead 
to the minimum as straight 
as possible

∇ f  xk 

−∇ f x k 
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Step 1: Choose search direction

Basic assumption: We can usually only expect to know the 
minimization function              locally at        .
That means that we can only evaluate

∇ f  xk =gkf xk 

x k

∇2 f  xk =H k ...

For a search direction, try to model       in the vicinity of        
by a Taylor series:

f xk 

f x k

f x k pk   ≈  f x k 

                                         gk
T pk

                                          
1
2

pk
T H k pk  
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Step 1: Choose search direction

Goal:  Approximate           in the vicinity of       by a model

with ∇ f  xk =gkf xk =f k

x k

∇2 f  xk =H k ...

Then: Choose that direction       that minimizes the model

f ⋅

pk

f xkp  ≈  mk p   = f k   gk
T p    

1
2

pT H k p  

mk  p



101               Wolfgang Bangerth

f xkp ≈ f k  gk
T p = mk  p

pk =− gk

pk=−∇ f xk 

Method 1 (Gradient method, Method of Steepest Descent):

search direction is minimizing direction of linear model

Step 1: Choose search direction
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mk p  = f k  gk
T p 

1
2

pT H k p

∂mk p

∂ p
 = gkH k p=0            pk = −H k

−1 gk

Method 2 (Newton's method):

search direction is to the minimum of the quadratic model

Minimum is characterized by

Step 1: Choose search direction
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Method 2 (Newton's method)  --  alternative viewpoint:

Newton step is also generated when applying Newton's method 

for the root-finding problem (F(x)=0) to the necessary optimality 

condition:

Linearize necessary condition around  x
k
:

0  =  ∇ f x *  = ∇ f  xk   ∇
2 f x k  x *−x k   ...

                                    gk             H k          pk

pk  = −H k
−1 gk

Step 1: Choose search direction
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Step 1: Choose search direction

mk p = f k  gk
T p 

1
2

pT H k p
1
6 [ ∂3 f
∂ x l∂ xm∂ xn

]k p l pm pn

∂mk p

∂ p
 = gkH k p

1
2 [ ∂3 f
∂ x l∂ xm∂ xn

]k p l pm=0            pk = ? ??

Method 3 (A third order method):

The search direction is to the minimum of the cubic model

Minimum is characterized by the quadratic equation

There doesn't appear to be any practical way to compute the 

solution of this equation for problems with more than one 

variable.
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Step 2: Determination of Step Length

k   =  arg min


  f xk pk 

Once the search direction is known, compute the update by 
choosing a step length       and setk

x k1   =   xkk pk

Determine the step length by solving the 
1-d minimization problem (line search):

For Newton's method: If the quadratic 
model is good, then step is good, then 
take full step with k=1
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Convergence: Gradient method

∥x k− x *∥  ≤  C∥x k−1−x *∥

Gradient method converges linearly, i.e.

Gain is a fixed factor  C<1
Convergence can be very slow if  C  close to 1.

Example: If  f(x)=xTHx, with H positive definite and for 
optimal line search, then

C≈
n−1

n1

                {i}=spectrum H

x 2 y2      C=0 x 25y2      C≈0.6
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Convergence: Newton's method

Newton's method converges quadratically, i.e.

Optimal convergence order only if step length is 1, otherwise 
slower convergence (step length is 1 if quadratic model 
valid!)

If quadratic convergence: accelerating progress as iterations 
proceed.

Size of  C:

C measures size of nonlinearity beyond quadratic part.

C  ∼  supx , y

∥∇2 f (x*)−1  (∇ 2 f (x)−∇ 2 f ( y ))∥
∥x− y∥

∥x k− x *∥  ≤  C∥x k−1−x *∥2
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Example 1: Gradient method

f x , y =−x32x2 y2

Local minimum at x=y=0,
saddle point at x=4/3, y=0
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Example 1: Gradient method

Convergence of gradient method:
Converges quite fast, with linear rate
Mean value of convergence constant  C :  0.28
At (x=0,y=0), there holds

∇
2 f 0,0~{1=4,2=2}             C≈

4−2
42

≈0.33

∥x k− x *∥
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Example 1: Newton's method

f x , y =−x32x2 y2

Local minimum at x=y=0,
saddle point at x=4/3, y=0
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Example 1: Newton's method

Convergence of Newton's method:
Converges very fast, with quadratic rate
Mean value of convergence constant  C :  0.15

Theoretical estimate yields  C=0.5

∥x k− x *∥ ≤ C∥x k−1− x*∥2

∥x k− x *∥
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Example 1: Comparison between methods

Newton's method much faster than gradient method

Newton's method superior for high accuracy due to higher 
order of convergence

Gradient method simple but converges in a reasonable 
number of iterations as well

∥x k− x *∥

k
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Example 2: Gradient method

(Banana valley function)

Global minimum at x=y=0

f x , y =
4x− y2


2


1
100  1

100
y2
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Example 2: Gradient method

Convergence of gradient method:
Needs almost 35,000 iterations to come closer than 0.1 to 
the solution!
Mean value of convergence constant  C :  0.99995 
At (x=4,y=2), there holds

∇
2 f 4,2~{1=0.1,2=268}             C≈

268−0.1
2680.01

≈0.9993

∥x k− x *∥
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Example 2: Newton's method

(Banana valley function)

Global minimum at x=y=0

f x , y =
4x− y2


2


1
100  1

100
y2
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Example 2: Newton's method

Convergence of Newton's method:
Less than 25 iterations for an accuracy of better than 10-7!

Convergence roughly linear for first 15-20 iterations since 
step length

Convergence roughly quadratic for last iterations with step 
length 

k≠1

∥x k− x *∥

k≈1
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Example 2: Comparison between methods

Newton's method much faster than gradient method

Newton's method superior for high accuracy (i.e. in the 
vicinity of the solution) due to higher order of convergence

Gradient method converges too slowly for practical use

∥x k− x *∥
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Practical line search strategies

Ideally: Use an exact step length determination (line search) 
based on

This is a 1d minimization problem for  α, solvable via Newton's 
method/bisection search/etc.

However: Expensive, may require many function/gradient 
evaluations.

Instead: Find practical criteria that guarantee convergence but 
need less function evaluations!

k   =  arg min


 f xk pk 
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Practical line search strategies

Strategy: Find practical criteria that guarantee convergence 
but need less evaluations.

Rationale: 

● Near the optimum, quadratic approximation of f is valid
→ take full steps (step length 1) there

● Line search only necessary far away from the solution

● If close to solution, need to try α=1 first 

Consequence:

● Near solution, quadratic convergence of Newton's method 
is retained

● Far away, convergence is slower in any case.
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Practical line search strategies

Practical strategy: Use an inexact line search that:
● finds a reasonable approximation to the exact step length
● chosen step length guarantees a sufficient decrease in f(x);
● chooses full step length 1 for Newton's method whenever 

possible.

f x , y =x 4− x2 y4− y2
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Practical line search strategies

Wolfe condition 1 (“sufficient decrease” condition): 
Require step lengths to produce a sufficient decrease

f xk pk    ≤   f xk     c1 [ ∂ f x k pk 

∂  ]
=0

                            =  f k    c1∇ f k⋅pk

Necessary:

Typical values:

i.e.: only very small 
decrease mandated

0c11

c1=10−4



f xk pk 
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Practical line search strategies

∇ f xk pk ⋅pk  =  [∂ f xk pk 

∂ ]
= k

  ≥   c2[∂ f xk pk 

∂ ]
=0

 =  c2∇ f k⋅pk

Necessary:

Typical:

Rationale: Exclude too 
small step lengths

0c1c21

c2=0.9



f xk pk 

Wolfe condition 2 (“curvature” condition): 
Require step lengths where f has shown sufficient 
curvature upwards
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Practical line search strategies

Wolfe conditions 

Conditions 1 and 2 usually yield reasonable ranges for the 
step lengths, but do not guarantee optimal ones



f xk pk 
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Practical line search strategies - Alternatives



f xk pk 


f xk pk 



f xk pk 

Strict Wolfe conditions:

∣[∂ f xk pk

∂ ]
=k

∣  ≤   c2∣[ ∂ f xk pk 

∂ ]
=0
∣

Goldstein conditions:

f xk pk    ≥   f xk     1−c1 [∂ f xk pk 

∂  ]
=0
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Practical line search strategies

Conditions like the ones above tell us whether a given step 
length is acceptable or not.

In practice, don't try too many step lengths – checking the 
conditions involves function evaluations of  f(x).

Typical strategy (“Backtracking line search”):
1. Start with a trial step length 
    (for Newton's method:         )
2. Verify acceptance conditions for this
3. If yes: 
4. If no:                         and go to 2.

Note: A typical reduction factor is 

t=

=1
t

k=t

t=c t ,  c1

c=
1
2
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Practical line search strategies

An alternative strategy (“Interpolating line search”):

●   Start with              ,  set 

●   Verify acceptance conditions for

●   If yes: 

●   If no: 
- let 

- from evaluating the sufficient decrease condition

  we already know                     ,
  and

- if         then choose           as minimizer of the quadratic
  function that interpolates 

- if         then choose           as the minimizer of the cubic
  function that interpolates

αt
(0)
=ᾱ=1

t
i 

k=t
i

k = f x k pk 

k 0= f x k  k ' 0=∇ f k⋅pk=g k⋅pk

f xkt
i  pk   ≤  f k    c1t

 i
∇ f k⋅pk

k t
i= f  xkt

i pk 

i=0

i=0 t
i1

k 0 , ' k 0 ,k t
i

i0 t
i1

k 0 , ' k 0 ,k t
i ,k t

i−1
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Practical line search strategies

An alternative strategy (“Interpolating line search”):

Step 1: Quadratic interpolation

αt
(0)
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Practical line search strategies

An alternative strategy (“Interpolating line search”):

Step 2 and following: Cubic interpolation

αt
(0)

αt
(1)



129               Wolfgang Bangerth

Part 5

Smooth unconstrained 
problems:

Trust region algorithms

minimize   f x 
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Line search vs. trust region algorithms

Line search algorithms:
Choose a relatively simple strategy to find a search direction
Put significant effort into finding an appropriate step length
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Line search vs. trust region algorithms

Trust region algorithms:
Choose simple strategy to determine a step length.
Put effort into finding an appropriate search direction.

Background:
In line search methods, we choose a direction based on a local 
approximation of the objective function
I.e.: Try to predict  f(x)  far away from x

k
 by looking at f

k
 , g

k
 , H

k

This can't work when still far
from the solution!
(Unless  f(x)  is almost
quadratic everywhere.)
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Trust region algorithms

Trust region algorithms:
Choose simple strategy to determine a step length.
Put effort into finding an appropriate search direction.

Alternative strategy:
Keep a number  Δ

k
  that indicates up to which distance we trust 

that our model m
k
(p) is a good approximation of  f(x

k
+p

k
).

Find an update as follows:

Then accept the update unconditionally, i.e. without line search:

pk  =  arg min p  mk  p= f kg k⋅p
1
2

pT B p

           such that    ∥p∥ ≤  k

xk1  = xk pk
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Trust region algorithms

Example:

Line search Newton direction leads to the exact minimum of 
approximating model m

k
(p).

However, m
k
(p) does not approximate f(x) well at these 

distances.

Consequently, we need line search as a safe guard.

f x mk  p

xk

pk
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Trust region algorithms

Example:

Rather, decide how far we trust the model and stay within this 
radius!

f x mk  p

xk
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Trust region algorithms

Basic trust region algorithm:
For k=1,2,...:
● Compute update by finding approximation      to the solution of

● Compute predicted improvement
● Compute actual improvement

● If                                                  then
                             and                 then

● If                          for some                    then
                                                              else

PI  = mk 0−mk  pk 

pk  = arg min p  mk  p= f kg k⋅p1
2

pT B k p

           such that    ∥p∥ ≤   k

AI  = f  xk − f  xk pk 

AI /PI   1/4

AI /PI   3 /4

 k1  = 1
4
∥ pk∥

 k1  =  2k
∥pk∥=k

AI /PI    ∈[ 0,1/ 4 ) x k1  = xk pk

xk1  = xk

pk
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Trust region algorithms

Fundamental difficulty of trust region algorithms:

● Not a trivial problem to solve!
● As with line search algorithms, don't spend too much time 

finding the exact minimum of an approximate model.

● Practical trust region methods are about finding cheap ways 
to approximate the solution of the problem above!

pk  = arg min p  mk  p= f kg k⋅p1
2

pT B k p

           such that    ∥p∥ ≤   k
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Trust region algorithms: The dogleg method

Find an approximation to the solution of:

Note:

If trust region radius is small, then we get the “Cauchy point” in 
the steepest descent direction:

     is the minimizer of f(x) in direction

If trust region radius is large, then we get the (quasi-)Newton 
update:

pk  = arg min p  mk  p= f kg k⋅p1
2

pT B k p

           such that    ∥p∥ ≤   k

pk  ≈ pk
C  =   pk

SD

pk  = pk
B  = −B k

−1 g k

pk
SD  = − k

g k

∥g k∥
∈[0,1]

pk
SDpk

C
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Trust region algorithms: The dogleg method

Find an approximation to the solution of:

pk  = arg min p  mk  p= f kg k⋅p1
2

pT B k p

           such that    ∥p∥ ≤   k

 k∥pk
B∥

pk
B

pk
C

x k

pk
C

x k pk
B

 k∥pk
B∥
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Trust region algorithms: The dogleg method

Find an approximation to the solution of:

Idea:

Find the approximate solution       along the “dogleg” line

pk  = arg min p  mk  p= f kg k⋅p1
2

pT B k p

           such that    ∥p∥ ≤   k

pk
B x k pk

B

pk
C

pk
C

pk

x k      x k p k
C      xk pk

B

x k
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Trust region algorithms: The dogleg method

Find an approximation to the solution of:

In practice, the Cauchy point is difficult to compute because it 
requires a line search. 

Thus, dogleg method doesn't use the minimizer      of  f  along
but the minimizer 

of 

The dogleg then runs along

pk  = arg min p  mk  p= f kg k⋅p1
2

pT B k p

           such that    ∥p∥ ≤   k

pk
C pk

SD

pk
U
=−

g k
T g k

g k
T Bk g k

g k

mk  p= f kg k
T p 1

2
pT Bk p

x k      x k p k
U      x k pk

B
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Trust region algorithms: The dogleg method

Find an approximation to the solution of:

Dogleg algorithm:

If                         satisfies                    then set

Otherwise, if                          satisfies                then set

Otherwise choose         as the intersection point of the line 
and the circle with radius

pk  = arg min p  mk  p= f kg k⋅p1
2

pT B k p

           such that    ∥p∥ ≤   k

pk
B=−Bk

−1 g k pk= pk
B

pk
U
=−

g k
T g k

g k
T Bk g k

g k

∥p k
B∥ k

∥p k
U∥ k pk=

pk
U

∥pk
U∥
 k

pk pk
U pk

B

 k
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Part 6

Practical aspects of 
Newton methods

minimize   f x 



143               Wolfgang Bangerth

What if the Hessian is not positive definite

At the solution, Hessian                    is positive definite. If f(x) is 
smooth, Hessian is positive definite near the optimum.

However, this needs not be so far away from the optimum:

∇2 f  x*

At initial point
the Hessian is indefinite:

H 0=∇
2 f x0=−0.022 0.134

0.134 −0.337
1=−0.386,    2=0.027

Quadratic model

has saddle point instead of 
minimum, Newton step is 
invalid!

mk  p= f kgk
T p

1
2

pT H k p

x0
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What if the Hessian is not positive definite

Background: Search direction only useful if it is a descent 
direction:

Trivially satisfied for Gradient method, for Newton's method 
there holds:

∇ f  xk 
T⋅pk0

pk=−H k
−1 g k                gk

T⋅pk=−gk
T H k

−1 gk    0

Search direction only a 
guaranteed descent direction, 
if H positive definite! 

Otherwise search direction is 
direction to saddle point of 
quadratic model and might be 
a direction of ascent!
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What if the Hessian is not positive definite

If Hessian is not positive definite, then modify the quadratic 
model:

● retain as much information as possible;
● model should be convex, so that we can seek a minimum.

The general strategy then is to replace the quadratic model by 
a positive definite one:

Here,      is a suitable modification of exact Hessian                  
so that        is positive definite.

Note: To retain ultimate quadratic convergence, we need that

mk  p  = f kgk
T p

1
2

pT H k p

H k H k=∇
2 f  xk

H k

H k  H k         as       xk x *
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What if the Hessian is not positive definite

The Levenberg-Marquardt modification:

Choose

so that the minimum of

lies at

mk  p  =  f kgk
T p

1
2

pT Hk p

H k  = H k I              −i

Note: Search direction is mixture 
between Newton direction and gradient.

Note: Close to the solution the Hessian 
must become positive definite and we 
can choose 

pk
N

pk
G

pk=− H k
−1 gk  = −H k I −1 gk

=0
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What if the Hessian is not positive definite

The eigenvalue modification strategy:

Since H is symmetric, it has a complete set of eigenvectors:

Therefore replace the quadratic model by a positive definite 
one:

with

Note: Only modify the Hessian in directions of negative 
curvature.

Note: Close to the solution, all eigenvalues become positive 
and we get again the original Newton matrix.

H k  =  ∇2 f  xk   =  ∑i
i v i v i

T

Hk  = ∑i
max { i , }  v i v i

T

mk  p  = f kgk
T p

1
2

pT H k p
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What if the Hessian is not positive definite

One problem with the modification

is that the search direction is given by

that is search direction has large component (of size 1/ε) in 
direction of modified curvatures!

An alternative that avoids this is to use

H k  = ∑i
max { i , }  v i v i

T

pk  =  −H̃ k
−1 gk  =  −∑i

1
max {λi ,ϵ}

 v i (v i
T gk )

H k  = ∑i
∣i∣vi v i

T
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What if the Hessian is not positive definite

Theorem: Using full step length and either of the Hessian 
modifications

we have that if                 and if               then convergence 
happens with quadratic rate.

Proof: Since  f  is twice continuously differentiable, there is a k 
such that  x

k
  is close enough to x* that  H

k
  is positive definite. 

When that is the case, then

for all following iterations, providing the quadratic convergence 
rate of the full step Newton method.

H k  = ∑i
max { i , }  v i v i

T

xk x *

H k  = H k

H k  = H k I              −i

f ∈C2,1
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What if the Hessian is not positive definite

Example:

Blue regions indicate that 
Hessian 

is not positive definite.

f (x , y )  =  x4−x2+ y4− y2

∇
2 f (x , y )  =  (12x2

−2 0
0 12y2−2)

minima at   x=
±√2

2,
y=
±√(2)

2
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What if the Hessian is not positive definite

Starting point:

1.Negative gradient

2.Unmodified Hessian search 
direction

3.Search direction with eigenvalue 
modified Hessian (=10-6)

4.Search direction with shifted 
Hessian (=2.5; search direction 
only good by lucky choice of )

x0=0.1        y0=0.87

H 0  =  −1.88 0
0 7.08 

(1)(2)

(3)

(4)
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Truncated Newton methods

In any Newton or Trust Region method, we have to solve an 
equation of the sort

or potentially with a modified Hessian:

Oftentimes, computing the Hessian is more expensive than 
inverting it, but not always.

Question: Could we possibly get away with only approximately 
solving this problem, i.e. finding

with suitable conditions on how accurate the approximation is?

H k pk  = −gk

H k pk  = −gk

pk  ≈ −H k
−1 gk
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Truncated Newton methods

Example: Since the Hessian (or a modified version) is a 
positive definite matrix, we may want to solve

using an iterative method such as the Conjugate Gradient 
method, Gauss-Seidel, Richardson iteration, SSOR, etc etc.

While all these methods eventually converge to the exact 
Newton direction, we may want to truncate this iteration at one 
point.

Question: When can we terminate this iteration?

H k pk  = −gk
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Truncated Newton methods

Theorem 1: Let       be an approximation to the Newton 
direction defined by

and let there be a sequence of numbers                         so that

Then if                  then the full step Newton method converges 
with linear order.

H k pk  = −gk

∥gkH k pk∥

∥gk∥
≤k1

pk

{ k},k1

xk x *



155               Wolfgang Bangerth

Truncated Newton methods

Theorem 2: Let       be an approximation to the Newton 
direction defined by

and let there be a sequence of numbers                                      
so that

Then if                  then the full step Newton method converges 
with superlinear order.

H k pk  = −gk

∥gkH k pk∥

∥gk∥
≤k1

p̂k

{ k},k1, k0

xk→ x*
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Truncated Newton methods

Theorem 3: Let       be an approximation to the Newton 
direction defined by

and let there be a sequence of numbers                                      
so that

Then if                  then the full step Newton method converges 
with quadratic order.

H k pk  = −gk

∥gkH k pk∥

∥gk∥
≤k1

{ k},k1, k=O ∥gk∥

pk

xk x *
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Part 7

Quasi-Newton update formulas

Bk1=Bk...
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Quasi-Newton update formulas

Observation 1: 

Computing the exact Hessian to determine the Newton search 
direction

is expensive, and sometimes impossible. 

It at least doubles the effort per iteration because we need not 
only the first but also the second derivative of f(x).

It also requires us to solve a linear system for the search 
direction.

H k pk  = −gk
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Quasi-Newton update formulas

Observation 2: 

We know that we can get superlinear convergence if we 
choose the update       using 

instead of

under certain conditions on the matrix B
k
.

Bk pk  = −gk

pk

H k pk  = −gk
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Quasi-Newton update formulas

Question: 

● Maybe it is possible to find matrices  B
k  

for which:

● Computing  B
k
  is cheap and requires no additional 

function evaluations

● Solving

for  p
k
  is cheap

● The resulting iteration still converges with superlinear 
order.

Bk pk  = −gk
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Motivation of ideas

Consider a function p(x).

The Fundamental Theorem of Calculus tells us that

for some

Let's apply this to                                                           :

Let us denote                                                       then this reads

with an “average” Hessian       .

p  z − px =∇ p T  z−x 

=xt  z−x ,  t∈[0,1 ]

px =∇ f x ,   z=xk ,  x=xk−1

∇ f xk −∇ f xk−1=gk−gk−1=∇
2 f x k−t  pkxk− xk−1

                                = H xk−xk−1

yk−1=g k−g k−1 , sk−1= xk− xk−1

H sk−1= yk−1

H
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Motivation of ideas

Requirements:

● We seek a matrix  B
k+1

  so that

● The “secant condition” holds:

● B
k+1

 is symmetric

● B
k+1

  is positive definite

● B
k+1

 changes minimally from B
k

● The update equation is easy to solve for

Bk1 sk= yk

pk1  =  −B k1
−1 g k1
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Davidon-Fletcher-Powell

The DFP update formula:

Given  B
k
 define B

k+1
  by

This satisfies the conditions:

● It is symmetric and positive definite

● It is among all possible matrices the one that minimizes

● It satisfies the secant condition

Bk +1=( I−γ yk sk
T
)B k ( I−γ sk yk

T
)+γ yk yk

T

   γk=
1

yk
T sk

                                           

∥ H−1/2Bk1−Bk  H
−1/2∥F

Bk1 sk= yk
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Broyden-Fletcher-Goldfarb-Shanno

The BFGS update formula:

Given  B
k
 define B

k+1
  by

This satisfies the conditions:

● It is symmetric and positive definite

● It is among all possible matrices the one that minimizes

● It satisfies the secant condition

Bk1=Bk−
Bk sk sK

T Bk

sk
T Bk sK


y k y k

T

yk
T sk

∥ H 1/2Bk1
−1 −Bk

−1 H 1/2∥F

Bk1 sk= yk

Bk1=Bk−
Bk sk sK

T Bk

sk
T Bk sK


y k y k

T

yk
T sk
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Broyden-Fletcher-Goldfarb-Shanno

So far:

● We seek a matrix  B
k+1

  so that

● The secant condition holds:

● B
k+1

 is symmetric

● B
k+1

  is positive definite

● B
k+1

 changes minimally from B
k 
 in some sense

● The update equation is easy to solve for

Bk1 sk= yk

pk  = −Bk
−1 gk
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DFP and BFGS

Now a miracle happens:

For the DFP formula:

For the BFGS formula:

This makes computing the next update very cheap!

Bk1= I−k y k sk
T  Bk  I−k sk yk

T k yk yk
T ,        k=

1

yk
T sk

Bk1
−1
=Bk

−1
−

Bk
−1 yk yk

T Bk
−1

yk
T Bk

−1 yk


sk sk

T

y k
T sk

                                           

Bk1=Bk−
Bk sk s K

T Bk

sk
T Bk sk


y k y k

T

yk
T sk

                                                

Bk1
−1
= I−k sk yk

T
 Bk
−1
 I−k yk sk

T
k sk sk

T
,         k=

1

y k
T sk
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DFP + BFGS = Broyden class

What if we mixed:

This is called the “Broyden class” of update formulas. 

The class of Broyden methods with                       is called the 
“restricted Broyden class”.

B k1
DFP
= I−k yk sk

T
Bk  I−k sk y k

T
 k yk yk

T ,        k=
1

yk
T sk

                                           

Bk1
BFGS=Bk−

Bk sk s K
T Bk

sk
T Bk sk


yk yk

T

yk
T sk

                                                

Bk1=k Bk1
DFP1−k Bk

BFGS

0≤k≤1
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DFP + BFGS = Broyden class

Theorem: Let            , let      be a starting point so that the set

is convex. Let        be any symmetric positive definite matrix. 
Then

for any sequence            generated by a quasi-Newton method 
that uses a Hessian update formula by any member of the 
restricted Broyden class with the exception of the DFP method  
              .

f ∈C2 x0

={x : f x≤f x0}

B0

xk x *

xk

k=1
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DFP + BFGS = Broyden class

Theorem: Let               .  Assume the BFGS updates converge, 
then

with superlinear order.

f ∈C2,1

xk x *
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Practical BFGS: Starting matrix

Question: How do we choose the initial matrix                   ?

Observation 1: The theorem stated that we will eventually 
converge for any symmetric, positive definite starting matrix.

In particular, we could choose a multiple of the identity matrix     
                  

Observation 2: If        is too small, then 

is too large, and we need many trials in line search to find a 
suitable step length.

Observation 3: The matrices B should approximate the 
Hessian matrix, so they at least need to have the same 
physical units.

B0  or B0
−1

B0= I ,    B0
−1=

1


I



p0=−B0
−1 g0=−

1


g0
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Practical BFGS: Starting matrix

Practical approaches:

Strategy 1: Compute the first gradient g
0
, choose a “typical” 

step length     , then set

so that we get

Strategy 2: Approximate the true Hessian somehow. For 
example, do one step with the heuristic above, choose 

and start over again.



B0=
∥g0∥


I ,    B0

−1=

∥g0∥

I

p0=−B0
−1 g0=−

g0

∥g0∥

B0=
y1

T y1

y1
T s1

I ,    B0
−1=

y1
T s1

y1
T y1

I
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Practical BFGS: Limited Memory BFGS (LM-BFGS)

Observation: The matrices

are full, even if the true Hessian is sparse.

Consequence: 

We need to compute all n2 entries, and store them.

Bk1=Bk−
Bk sk s K

T Bk

sk
T Bk sk


y k y k

T

yk
T sk

                                                

Bk1
−1
= I−k sk yk

T
 Bk
−1
 I−k yk sk

T
k sk sk

T
,         k=

1

y k
T sk
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Practical BFGS: Limited Memory BFGS (LM-BFGS)

Solution: Note that in the kth iteration, we can write

We can expand this recursively:

Consequence: We need only store kn entries.

Bk
−1=V k−1

T Bk−1
−1 V k−1k−1 sk−1 sk−1

T                      

                    with k−1=
1

yk−1
T sk−1

,V k−1= I−k−1 y k−1 sk−1
T 

Bk
−1=V k−1

T Bk−1
−1 V k−1k−1 sk−1 sk−1

T                                                      

       =V k−1
T V k−2

T Bk−2
−1 V k−2V k−1

             k−2 V k−1
T sk−1 sk−2

T V k−1k−1 sk−1 sk−1
T

       =...
       =[V k−1

T ⋅⋅⋅V 1
T ]B0

−1 [V 1⋅⋅⋅V k−1 ]

             ∑ j=1

k
k− j{[V k−1

T
⋅⋅⋅V k− j1

T ] sk− j sk− j
T

[V k− j1⋅⋅⋅V k−1 ]}
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Practical BFGS: Limited Memory BFGS (LM-BFGS)

Problem: kn elements may still be quite a lot if we need many 
iterations. Forming the product with this matrix will then also be 
expensive.

Solution: Limit memory and CPU time by only storing the last 
m updates:

Consequence: We need only store mn entries and 
multiplication with this matrix requires 2mn+O(m3) operations.

Bk
−1=[V k−1

T ⋅⋅⋅V k−m
T ]B0,k

−1 [V k−m⋅⋅⋅V k−1 ]                                 

             ∑ j=1

m
k− j{[V k−1

T ⋅⋅⋅V k− j1
T ] sk− j sk− j

T [V k− j1⋅⋅⋅V k−1 ]}
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Practical BFGS: Limited Memory BFGS (LM-BFGS)

In practice: 

● Initial matrix can be chosen independently in each 
iteration; typical approach is again

● Typical values for m are between 3 and 30.

Bk
−1=[V k−1

T ⋅⋅⋅V k−m
T ]B0,k

−1 [V k−m⋅⋅⋅V k−1 ]                                 

             ∑ j=1

m
k− j{[V k−1

T ⋅⋅⋅V k− j1
T ] sk− j sk− j

T [V k− j1⋅⋅⋅V k−1 ]}

B0,k
−1=

y k−1
T sk−1

yk−1
T yk−1

I
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Parts 1-7

Summary of methods for 
smooth unconstrained 

problems

minimize   f x 
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Summary

● Newton's method is unbeatable with regard to speed of 
convergence

● However: To converge, one needs
- a line search method + conditions like the Wolfe conditions
- Hessian matrix modification if it is not positive definite

● Newton's method can be expensive or infeasible if
- computing Hessians is complicated
- the number of variables is large

● Quasi-Newton methods, e.g. LM-BFGS, help:
- only need first derivatives
- need little memory and no explicit matrix inversions
- but converge slower (at best superlinear)

● Trust region methods are an alternative to Newton's method 
but share the same drawbacks
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Part 8

Equality-constrained 
Problems

minimize  f x
                 g i x    =   0,       i=1,... , ne
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An example

Consider the example of the body suspended from a ceiling 
with springs, but this time with an additional rod of fixed 
length attached to a fixed point:

To find the position of the body we now need to solve the 
following problem:

minimize  f x =E x , z =∑i
E spring , ix , z Epot x , z 

                 ∥x−x0∥−Lrod   =   0
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An example

We can gain some insight into the problem by plotting the 
energy as a function of (x,z) along with the constraint:



181               Wolfgang Bangerth

Definitions

We call this the standard form of equality constrained 
problems:

We will also frequently write this as follows, implying equality 
elementwise:

minimizex∈D⊂Rn   f x 

                           g ix   =  0,     i=1 ...ne

minimizex∈D⊂Rn   f x 

                           g x   =  0
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Definitions

A trivial reformulation of the problem is obtained by defining the 
feasible set:

Then the original problem is equivalently recast as

Note 1: Reformulation is not of much practical interest.

Note 2: Feasible set can be continuous or discrete, or empty if 
constraints are mutually incompatible. 

We will always assume that it is continuous and non-empty.

={x∈Rn :  g x=0}

minimizex∈D∩⊂Rn   f x



183               Wolfgang Bangerth

The quadratic penalty method

Observation: The solution of

must lie within the feasible set where g(x)=0.

Idea: Let's relax the constraint and also search close to 
where g(x) is small but not zero. However, make sure that 
the objective function becomes very large if far away from 
the feasible set:

Q
μ
(x) is called the quadratic relaxation of the constrained 

minimization problem.  μ is the penalty parameter.

minimize x∈D⊂Rn   Q

 x= f  x

1
2
∥g x ∥2

minimizex∈D⊂Rn   f x 

                           g x   =  0
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The quadratic penalty method

Why is Q
μ
(x) called relaxation of the constrained 

minimization problem with f(x), g(x)?

Consider the original problem

with relaxation

Replacing fixed rod by spring with constant      would yield 
an unconstrained problem with objective function

Q x =E x , z 
1

2
∥x−x0∥−Lrod 

2

minimize  f x =E x , z =∑i
E spring , ix , z Epot x , z 

                 ∥x−x0∥−Lrod   =  0

f x =E x , z 
1
2
D ∥x− x0∥−L rod 

2

D
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The quadratic penalty method

Example: Q
μ
(x) with μ=infinity
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The quadratic penalty method

Example: Q
μ
(x) with μ=0.01
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The quadratic penalty method

Example: Q
μ
(x) with μ=0.001
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The quadratic penalty method

Example: Q
μ
(x) with μ=0.00001
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The quadratic penalty method

Algorithm:
Given 
For t=0,1, 2, ...:

Find approximation         to the (unconstrained) mimizer  
of                 that satisfies

using               as starting point.

Set t=t+1, 

Typical values:

x t
*

∥∇Q t
 x t

*
∥≤t

xt
*

Q
 t
 x

x0
start ,  {μt }→0,  {t }→ 0

xt
start

xt
start
=xt−1

*

μt=cμt−1 ,            c=0.1  to 0.5
t=c t−1                                    
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The quadratic penalty method

Positive properties of the quadratic penalty method:

● Algorithms for unconstrained problems readily available;

● Q at least as smooth as  f, g
i 
  for equality constrained 

problems;

● Usually only few steps are needed for each penalty 
parameter, since good starting point known;

● It is not really necessary to solve each unconstrained 
minimization to high accuracy.

Negative properties of the quadratic penalty method:

● Minimizers for finite penalty parameters are usually 
infeasible;

● Problem is becoming more and more ill-conditioned near 
optimum as penalty parameter is decreased, Hessian large.
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The quadratic penalty method

Theorem (Convergence): Let         be exact minimizer of        
and let                .  Let  f,g  be once differentiable.

Then every limit point of the sequence                       is a 
solution of the constrained minimization problem

x t
* Q t

 x
 t0

{xt
*
}t=1,2,...

minimizex∈D⊂Rn   f x 

                           g x   =  0
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The quadratic penalty method

Theorem (Convergence): Let         be approximate 
minimizers of                    with

for a sequence                and let                .   Let 

Then every limit point of the sequence                       satisfies 
certain first-order necessary conditions for solutions of the 
constrained minimization problem

x t
*

Q t
 x

 t0

{xt
*
}t=1,2,...

minimizex∈D⊂Rn   f x 

                           g x   =  0

 t0

∥∇ Q t
 x t

*
∥≤ t

f ∈C2, g∈C1.
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Lagrange multipliers

Consider a (single) constraint g(x) as a function of x:

       g(x,z)=-0.1        g(x,z)=0         g(x,z)=0.1

gx =∥x− x0∥−Lrod
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Lagrange multipliers

Now look at the objective function f(x):

f x =∑i=1

3 1
2

D ∥x−x i∥−L0 
2
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Lagrange multipliers

Now both f(x), g(x):

                                 g(x,z)=0
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Lagrange multipliers

Now both f(x), g(x):

Conclusion:
● Solution is where isocontours are tangential to each other
● That is, where gradients of  f and g are parallel
● Solution is where g(x)=0
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Lagrange multipliers

Conclusion:
● The solution is where gradients of  f and g are parallel
● The solution is where g(x)=0

In mathematical terms:
The (local) solutions of 

are where the following conditions hold for some value of λ:

minimize  f x=E x , z =∑i
Espring , ix , z E pot x , z 

                 g x =∥x−x0∥−L rod   =  0

∇ f x −∇ g x   =  0
g x                         =  0
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Lagrange multipliers

Consider the same situation for three variables and two 
constraints:

f x = f x , y , z 
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Lagrange multipliers

Constraint 1: Contours of g
1
(x)

                       g
1
(x)=0                           g

1
(x)=1           g

1
(x)=2
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Lagrange multipliers

Constraint 2: Contours of g
2
(x)

g
2
(x)=-1

g
2
(x)=0

g
2
(x)=1
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Lagrange multipliers

Constraints 1+2 at the same time

g
2
(x)=0

                         g
1
(x)=0
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Lagrange multipliers

Constraints 1+2 and f(x):

g
2
(x)=0

                         g
1
(x)=0                    local solutions



203               Wolfgang Bangerth

Lagrange multipliers

Conclusion:
●The solution is where the gradient of  f can be written as a 

linear combination of the gradients of g
1
, g

2

●The solution is where g
1
(x)=0,  g

2
(x)=0
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Lagrange multipliers

Generally (under certain conditions):
The (local) solutions of 

are where the conditions

hold for some vector of  Lagrange multipliers  

Note: There are enough equations to determine both x and λ.

minimize  f x                         f x :ℝnℝ

                 gx    =  0,            g x :ℝ
n
ℝ

n e

∇ f x−⋅∇g x  = 0
gx                           = 0

∈ℝ
n e
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Lagrange multipliers

By introducing the  Lagrangian

the conditions

 can conveniently be written as

∇ f x−⋅∇g x  = 0
gx                           = 0

L x ,= f x −⋅g x ,           L:ℝn×ℝneℝ

∇
{x , }L x ,  =  0
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Constraint Qualification: Example 1

When can we characterize solutions by Lagrange multipliers?
Consider the problem

with solution

At the solution, we have

and consequently

x*=0,0,0T

minimize  f x = x12 y12z2,

                 g1x = x =0,
                 g2x = y = 0.

∇ f x*=2,2,0 T ,   ∇ g1x
*=1,0,0 T ,   ∇ g2x

*=0,1,0T

=2,2T
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Constraint Qualification: Example 1

When can we characterize solutions by Lagrange multipliers?
Compare this with the problem

with the same solution

At the solution, we now have

and there are no Lagrange multipliers so that

x*=0,0,0T

minimize  f x = x12 y12z2,

                 g1x = x2= 0,

                 g2x = y2= 0.

∇ f x*=2,2,0 T ,   ∇ g1x
*=∇ g2x

*=0,0,0T

∇ f x*
=⋅∇ g x*


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Constraint Qualification: Example 2

When can we characterize solutions by Lagrange multipliers?
Consider the problem

There is only a single
point at which both 
constraints are satisfied:

x⃗*
=(0,0)T

minimize  f x = y ,
                 g1x = x−12 y2−1= 0,

                 g2x = x1
2
 y

2
−1= 0.
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Constraint Qualification: Example 2

When can we characterize solutions by Lagrange multipliers?
Consider the problem

At the solution                       , we have

and again there are no Lagrange multipliers so that

x*=0,0T

minimize  f x = y ,
                 g1x = x−12 y2−1= 0,

                 g2x = x1
2
 y

2
−1= 0.

∇ f x*=0,1T ,   ∇ g1x
*=−∇ g 2x

*=2,0T

∇ f x*
=⋅∇ g x*


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Constraint Qualification: LICQ

Definition:
We say that at a point        the linear independence constraint 
qualification (LICQ) is satisfied if

is a set of n
e
 linearly independent vectors.

Note: This is equivalent to saying that the matrix

has full row rank n
e
.

x

{∇ g i x}i=1... n e

A  =  [
[∇ g 1x]

T

⋮

[∇ g ne
x]

T ]



211               Wolfgang Bangerth

First-order necessary conditions

Theorem:
Suppose that        is a local solution of

and suppose that at this point the LICQ holds. Then there exists a 
unique Lagrange multiplier vector so that the following conditions are 
satisfied:

Note: - These conditions are often referred to as the Karush-Kuhn-
Tucker (KKT) conditions.

- If LICQ does not hold, there may still be a solution,
but it may not satisfy the KKT conditions!

x*

minimize  f x                         f x :ℝnℝ

                 gx    =  0,            g x :ℝ
n
ℝ

n e

∇ f x−⋅∇g x  = 0
gx                           = 0
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First-order necessary conditions

Theorem (alternative form):
Suppose that        is a local solution of

and suppose that at this point the LICQ holds. Then

for every vector tangential to all constraints,

or equivalently

minimize  f x                         f x :ℝnℝ

                 gx    =  0,            g x :ℝ
n
ℝ

n e

∇ f x*⋅w  = 0

w  ∈  {v : v⋅∇ gix
*=0, i=1. ..ne}

x*

w  ∈ Null A
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Second-order necessary conditions

Theorem:
Suppose that        is a local solution of

and suppose that at this point the first order necessary conditions 
and the LICQ hold. Then

for every vector tangential to all constraints,

minimize  f x                         f x :ℝnℝ

                 gx    =  0,            g x :ℝ
n
ℝ

n e

wT∇2 f x*⋅w  ≥ 0

w  ∈ Null A

x*
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Second-order sufficient conditions

Theorem:
Suppose that at a feasible point         the first order necessary (KKT) 
conditions hold. Suppose also that 

for all tangential vectors

Then           is a strict local minimizer of

x

minimize  f x                         f x :ℝnℝ

                 gx    =  0,            g x :ℝ
n
ℝ

n e

wT∇2 f x ⋅w   0

w  ∈ Null A ,   w≠0

x
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Characterizing the null space of A

All necessary and sufficient conditions required us to test 
conditions like

for all tangential vectors

In practice, this can be done as follows:

If LICQ holds, then  dim(Null(A))=n-n
e
. Thus, there exist n-n

e
 

vectors  z
l
  so that  Az

l
=0 , and every vector w can be written as

This matrix  Z  can be computed from  A  for example by a QR 
decomposition.

wT∇2 f x ⋅w   0

w  ∈ Null A ,    w≠0

w = Z  ,     w∈ℝn , Z=[z 1 , ... ,zn−n e ]∈ℝ
n×n−ne , ∈ℝn−ne
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Characterizing the null space of A

With this matrix  Z , the following statements are equivalent:

First order
necessary
conditions

Second order
necessary
conditions

Second order
sufficient
conditions

wT∇ 2 f x ⋅w    0     ∀ w  ∈  Null A ,   w≠0

ZT [∇ 2 f x  ]Z   is positive definite

wT
∇

2 f x ⋅w  ≥  0     ∀ w  ∈  Null A

ZT [∇ 2 f x  ]Z   is positive semidefinite

∇ f x ⋅w  =  0     ∀w  ∈ Null A

[∇ f x  ]
T

Z  =  0
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Part 9

Quadratic programming

minimize  f x =
1
2

xT G xdT xe

                 gx =A x−b   =  0



218               Wolfgang Bangerth

Solving equality constrained problems

Consider a general nonlinear program with general nonlinear 
equality constraints:

Maybe we can solve such problems with an iterative scheme 
like unconstrained ones?

Analogy: For unconstrained nonlinear programs, we 
approximate f(x) in each iteration by a quadratic model. For 
quadratic functions, we can find minima in one step:

[∇ 2 f x0] p0=−∇ f x0  ⇔  x1=x0−H−1Hx0d=−H−1 d

min x f x=
1
2

xT H xdT xe

minimize  f x                         f x :ℝnℝ

                 gx    =  0,            g x :ℝ
n
ℝ

ne
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Solving equality constrained problems

For the general nonlinear constrained problem:
Assuming a condition like LICQ holds, then we know that we 
need to find points            at which

Alternatively, we can write this as 

with

∇ f x−⋅∇g x  = 0
gx                           = 0

L x ,= f x −⋅g x ,           L:ℝn
×ℝ

neℝ

∇
{x , }L x ,  =  0

{x ,}
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Solving equality constrained problems

If we combine                      then this can also be written as

which looks like the first-order necessary condition for 
minimizing L(z). We then may think of finding solutions as 
follows:
●  Start at a point 

●  Compute search directions using

●  Compute a step length

●  Update

Note: This is misleading, since we will in fact not look for 
minima of  L(z), but for saddle points. Consequently,                  
is indefinite.

∇ z L z   = 0

z={x ,}

z0=[ x0 , 0 ]
T

[∇ z
2 L zk] pk=−∇ z L zk 

zk1=zkk p k

k

∇ z
2 L  zk 
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Solving equality constrained problems

The equations we have to solve in each Newton iteration have 
the form

Because

the equations we have to solve read in component form:

[∇ z
2 L zk] pk = −∇ z L zk 

Lx ,=f x−⋅g x  ,           L :ℝn×ℝneℝ

∇
2 f  x k−∑i

i , k∇
2 g i  x k −∇ g  x k

−∇ g  x k 
T 0  pk

x

pk
  =  

                                                         = −∇ f  x k −∑i
 i , k∇ gi  x k 

−g  x k  
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Linear quadratic programs

Consider first the linear quadratic case with symm. matrix G:

with

Then the first search direction needs to satisfy the (linear) set 
of equations

or equivalently:

f x=
1
2

xT G xdT xe ,             f :ℝn
ℝ           

g x =Ax−b ,                              A∈ℝne×n , b∈ℝne

L x ,= f  x−T g x=
1
2

xT G xdT xe−T
Ax−b

 G −AT

−A 0 p0
x

p0
  = −Gx 0d−0

T A
−Ax0−b 

[∇ z
2 L z0] p0 = −∇ z L z0
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Linear quadratic programs

Theorem 1: Assume that  G  is positive definite in all feasible 
directions, i.e.  ZTGZ  is positive definite, and that the matrix A 
has full row rank. Then the KKT matrix

is nonsingular and the system

has a unique solution.

 G −AT

−A 0 p0
x

p0
  = −Gx 0d−0

T A
−Ax0−b 

 G −AT

−A 0 
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Linear quadratic programs

Theorem 2: Assume that  G  is positive definite in all feasible 
directions, i.e.  ZTGZ  is positive definite. Then the solution of 
the linear quadratic program

is equivalent to the first iterate 

that results from solving the linear system

irrespective of the starting point  x
0
.

min x  f  x=
1
2

xT G xd T xe

         g  x =Ax−b  =  0                             

x1 = x0 p0
x

 G −AT

−A 0 p0
x

p0
  = −Gx 0d−0

T A
−Ax0−b 
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Linear quadratic programs

Theorem 3: Assume that  G  is positive definite in all feasible 
directions, i.e.  ZTGZ  is positive definite, and that the matrix A 
has full row rank. Then the KKT matrix

has n positive, n
e
 negative eigenvalues, and no zero 

eigenvalues. In other words, the KKT matrix is indefinite but 
non-singular, and the quadratic function

in           has a single stationary point that is a saddle point.

 G −AT

−A 0 

L x ,=
1
2

xT G xdT xe−T
Ax−b

{x ,}
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Part 10

Sequential Quadratic Programming 
(SQP)

minimize  f x 
                gx    =   0
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The basic SQP algorithm

For             , the equality-constrained optimality conditions read

Like in the unconstrained Newton's method, sequential 
quadratic programming uses the following basic iteration:

●  Start at a point 

●  Compute search directions using

●  Compute a step length

●  Update

∇ z L z   = 0

z={x ,}

z0=[ x0 , 0 ]
T

[∇ z
2 L zk] pk=−∇ z L zk 

zk1=zkk p k

k
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Computing the SQP search direction

The equations for the search direction are

which we will abbreviate as follows:

with

∇
2f xk −∑i

 i , k∇
2 gi xk  −∇ g xk 

−∇ g xk 
T 0 pk

x

pk
  = 

                                                         =  −∇ f  xk −∑i
 i , k∇ gi  xk 

−g xk  

 W k −Ak

−Ak
T 0 p k

x

p k
   =  −∇ f xk −∑i

 i , k∇ gi xk 

−g xk  
Wk = ∇ x

2 L (xk ,λk )                          
Ak = ∇ x g(x k) = −∇ x∇λ L(xk ,λ k)
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Computing the SQP search direction

Theorem 1: Assume that  W  is positive definite in all feasible 
directions, i.e.  Z

k

TW
k
Z

k
  is positive definite, and that the matrix 

A
k
 has full row rank. Then the KKT matrix of SQP step k

is nonsingular and the system that determines the SQP search 
direction

has a unique solution.

Proof: Use Theorem 1 from Part 9.

Note: The columns of the matrix Z
k
 span the null space of A

k
.

 W k −Ak
T

−Ak 0 p k
x

p k
   =  −∇ x L xk ,k 

−g xk 

 W k −Ak
T

−Ak 0 
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Computing the SQP search direction

Theorem 2: The solution of the SQP search direction system

equals the minimizer of the problem

that approximates the original nonlinear equality-constrained 
minimization problem.

Proof: Essentially just use Theorem 2 from Part 9.

Note: This means that SQP in each step minimizes a quadratic 
model of the Lagrangian, subject to linearized constraints.

 W k −Ak
T

−Ak 0 p k
x

p k
   =  −∇ x L xk ,k 

−g xk 
minx  mk pk

x
=L xk ,k ∇x L  xk ,k

T p k
x


1
2

pk
xT
∇ x

2 L xk ,k  pk
x

         g  xk ∇ g xk 
T pk

x  =  0                             
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Computing the SQP search direction

Theorem 3: The SQP iteration with full steps, i.e.

converges to the solution of the constrained nonlinear 
optimization problem with quadratic order if (i) we start close 
enough to the solution, (ii) the LICQ holds at the solution and 
(iii) the matrix  Z

*

TW
*
Z

*
  is positive definite at the solution.

 W k −Ak
T

−Ak 0 p k
x

p k
   =  −∇ x L xk ,k 

−g xk 
xk1=xk pk

x ,        k1=kp k

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How SQP works

Example 1:

The search direction is then computed using the step

In other words, the linearized constraint enforces that

p2,k
x  = −(x2,k+1)       →       x2,k+1=x2, k+ p2,k

x  =  −1

min f x  =  
1
2
x1

2
x2

2


       g x  =  x21  =  0

min  mk ( pk
x)  =  L(xk , λk )  +  ( x1,k

x2, k−λk
)

T

pk
x  +  

1
2

pk
xT pk

x

          x2,k+1  +  (01)
T

pk
x  = 0
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How SQP works

Example 2:

Search direction is then computed by

In particular, if we are currently at (0,-2), this enforces

min  mk pk
x 

        x2, k−sin x1,k    −cos x1, k

1 
T

pk
x  =  0

min f x 
      g x  = x2−sinx1  = 0

−p1, kp2,k  =  2
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How SQP works

Example 3:

If constraint is already satisfied at a 
step, then search direction solves

In other words: The update step can only be tangential to 
the constraint (along the linearized constraint)!

min  mk pk
x 

        g xk ∇ gxk 
T pk

x  = ∇ g xk
T pk

x  = 0

min f x 
      g x  = 0
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Hessian modifications for SQP

The SQP step

is equivalent to the minimization problem

or abbreviated:

From this, we may expect to get into trouble if the matrix  
Z

k

TW
k
Z

k
  is not positive definite.

 W k −Ak
T

−Ak 0 p k
x

p k
   =  −∇ x L xk ,k 

−g xk 
minx  mk pk

x
=L xk ,k ∇x L  xk ,k

T p k
x


1
2

pk
xT
∇ x

2 L xk ,k  pk
x

         g  xk ∇ g xk 
T pk

x  =  0                             

minx  mk pk
x
=Lk∇ x f k

T
−k

T Ak  pk
x


1
2

pk
xT W k pk

x

         g xk Ak
T pk

x  =  0                             
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Hessian modifications for SQP

If the matrix Z
k

TW
k
Z

k  
in the SQP step

is not positive definite, then there may not be a unique solution.

There exist a number of modifications to ensure that an 
alternative step can be computed that satisfies

instead.

 W k −Ak
T

−Ak 0 p k
x

p k
   =  −∇ x L xk ,k 

−g xk 

 W k −A k
T

−Ak 0  pk
x

pk
  = −∇x L  xk ,k

−g xk  
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Line search procedures for SQP

Motivation: For unconstrained problems, we used f(x) to 
measure progress along a direction p

k
 computed from a 

quadratic model m
k
 that approximates f(x).

Idea: For constrained problems, we could consider L(z) to 
measure progress along a search direction p

k
 computed using 

the SQP step based on the model m
k
.

Problem 1: The Lagrangian L(z) is unbounded. E.g., for 
linear-quadratic problems, L(z) is quadratic of saddle-point form. 
Indeed, we are now looking for this saddle point of L.

Consequence 1: We can't use L(z) to measure progress in line 
search algorithms.
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Line search procedures for SQP

Motivation: For unconstrained problems, we used f(x) to 
measure progress along a direction p

k
 computed from a 

quadratic model m
k
 that approximates f(x).

Idea: For constrained problems, we could consider L(z) to 
measure progress along a search direction p

k
 computed using 

the SQP step based on the model m
k
.

Problem 2: Some step lengths may lead to a significant 
reduction in f(x) but take us far away from constraints g(x)=0. Is 
this better than a step that may increase f(x) but lands on the 
constraint ?

Consequence 2: We need a merit function that balances 
decrease of f(x) with satisfying the constraint g(x).
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Line search procedures for SQP

Solution: Drive step length determination using a merit 
function that contains both f(x) and g(x).

Examples: Commonly used choices are the l
1
 merit function

with

or Fletcher's merit function

with

1x  = f  x
1

∥g x ∥1

F  x = f  x−  xT g  x
1

2
∥g  x∥2

 x =[A  x A  xT ]−1 A  x∇ f  x

1

=∥k1∥∞ ,          0
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Line search procedures for SQP

Definition: A merit functions is called exact if the constrained 
optimizer of the problem

is also a minimizer of the merit function.

Note: Both the l
1
 and Fletcher's merit function

are exact for appropriate choices of           .

min x  f  x
         g  x  = 0                             

1x  = f  x
1

∥g x ∥1

F  x = f  x−  xT g  x
1

2
∥g  x∥2

 ,
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Line search procedures for SQP

Theorem 4: The SQP search direction that satisfies

is a direction of descent for both the l
1
  as well as Fletcher's 

merit function if (i) the current point x
k
 is not a stationary point 

of the equality-constrained problem, and (ii) the matrix  Z
k

TW
k
Z

k
 

is positive definite.

 W k −Ak
T

−Ak 0 p k
x

p k
   =  −∇ x L xk ,k 

−g xk 
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A practical SQP algorithm

Algorithm: For k=0,1,2,...
● Find a search direction using the KKT system

● Determine step length using a backtracking linear search, 
a merit function and the Wolfe (or Goldstein) conditions:

● Update the iterate using either

or

 W k −Ak
T

−Ak 0 p k
x

p k
   =  −∇ x L xk ,k 

−g xk 

 x k pk
x
   ≤    x k    c1∇ x k ⋅pk

x

∇ x k pk
x
⋅pk

x   ≥   c2∇  x k ⋅pk
x

xk + 1=xk+ αk pk
x ,        λk+ 1=λk+ αk p k

λ

x k1=x kk pk
x ,        k1=[Ak1 Ak1

T
]
−1 Ak1∇ f  x k1
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Parts 8-10

Summary of methods for 
equality-constrained Problems

minimize  f x
                 g i x    =   0,       i=1,... , ne
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Summary of methods

Two general methods for equality-constrained problems:

● Penalty methods (e.g. the quadratic penalty method) 
convert constrained problem into unconstrained one that can 
be solved with techniques well known.

However, often lead to ill-conditioned problems

● Lagrange multipliers reformulate the problem into one 
where we look for saddle points of a Lagrangian

● Sequential quadratic programming (SQP) methods solve 
a sequence of quadratic programs with linear constraints, 
which are simple to solve

● SQP methods are the most powerful methods.
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Part 11

Inequality-constrained 
Problems

minimize  f x
                 g i x    =   0,       i=1,... , ne

                 hix    ≥   0,       i=1,. .. , n i
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An example

Consider the example of the body suspended from a ceiling 
with springs, but with an element of fixed minimal length 
attached to a fixed point:

To find the position of the body we now need to solve the 
following problem:

minimize  f x=E x , z =∑i
Espring , ix , z E pot x , z 

                 ∥x− x0∥−Lrod   ≥   0
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An example

We can gain some insight into the problem by plotting the 
energy as a function of (x,z) along with the constraint:
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Definitions

We call this the standard form of inequality constrained 
problems:

We will also frequently write this as follows, implying 
(in)equality elementwise:

minimize x∈D⊂Rn   f x 
                           g i x    =   0,     i=1... ne

                           hix    ≥   0,     i=1 ... ni

minimize x∈D⊂Rn   f x 
                           g x    =   0
                           hx    ≥   0
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Definitions

Let x* be the solution of

We call a constraint active if it is zero at the solution x*:

● Obviously, all equality constraints are active, since a 
solution needs to satisfy  g(x*)=0

● Some inequality constraints may not be active if it so 
happens that                   for some index i

● Other inequality constraints may be active if 

We call the set of all active (equality and inequality) 
constraints the active set.

minimize x∈D⊂Rn   f x 
                           g i x    =   0,     i=1... ne

                           hix    ≥   0,     i=1 ... ni

hi  x* 0

hi  x *=0
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Definitions

Note: If x* is the solution of

then it is also the solution of the problem

where we have dropped all inactive constraints and made 
equalities out of all active constraints.

minimize x∈D⊂Rn   f x 
                           g i x    =   0,     i=1... ne

                           hix    ≥   0,     i=1 ...ni

minimize x∈D⊂Rn   f x 
                           g i x    =   0,     i=1... ne

                           hix    =   0,     i=1 ...ni ,i  is active at x*
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Definitions

A trivial reformulation of the problem is obtained by defining the 
feasible set:

Then the original problem is equivalently recast as

Note 1: This reformulation is not of much practical interest.

Note 2: The feasible set can be continuous or discrete. It can 
also be empty if the constraints are mutually incompatible. In 
the following we will always assume that it is continuous and 
non-empty.

={x∈Rn :  g  x=0, hx ≥0}

minimizex∈D∩⊂Rn   f x
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The quadratic penalty method

Observation: The solution of

must lie within the feasible set.

Idea: Let's relax the constraint and allow to search also 
where g(x) is small but not zero, or where h(x) is small and 
negative. However, make sure that the objective function 
becomes very large if far away from the feasible set:

Q
μ
(x) is called the quadratic relaxation of the minimization 

problem.  μ is the penalty parameter, and

minimizex∈D⊂R n   Q  x= f  x
1

2
∥g  x∥2


1

2
∥[h  x ]−∥2

minimize x∈D⊂Rn   f  x
                           g  x   =   0
                           h x   ≥  0

[h  x]− = min {0 , h  x}
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The quadratic penalty method

Replace the original constrained minimization problem

by an unconstrained method with a quadratic penalty term:

Example:

minimize  f  x 
                 gi  x   =  0,       i=1,... , ne

                 hi  x   ≥   0,       i=1,. .. , ni

minimize  f  x =sin  x
                 h1 x=x−0   ≥   0,
                 h2 x=1−x   ≥   0.

μ=0.01

μ=0.1

minimize
x∈D⊂Rn   Q


 x = f  x 1

2
∥g  x∥2

1
2
∥[h  x]−∥2
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The quadratic penalty method

Negative properties of the quadratic penalty method:
● minimizers for finite penalty parameters are usually 

infeasible;
● problem is becoming more and more ill-conditioned near 

optimum as penalty parameter is decreased, Hessian large;
● for inequality constrained problems, Hessian not twice 

differentiable at constraints.

=0.1

=0.01

=0.02

minimize x2
2       s.t. g x =x 2x 1

2=0

=2
=0.2
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The logarithmic barrier method

f x 

minimize f x =sinx         s.t.  x≥0,   x≤1

=0.1 =0.05

Replace the original constrained minimization problem

by an unconstrained method with a logarithmic barrier term:

minimize  f  x 
                 hi  x   ≥   0,       i=1,. .. , ni

minimizex∈D⊂Rn   Q

 x= f x∑i=1

ni

−log hi x 
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The logarithmic barrier method

Properties of successive minimization of

● intermediate minimizers are feasible, since Q
μ
(x)=∞ in the 

infeasible region; the method is an interior point method.
● Q  is smooth if constraints are smooth;
● we need a feasible point as starting point;
● ill-conditioning and inadequacy of Taylor expansion remain;
● Q

μ
(x) may be unbounded from below if  h(x)  unbounded.

● inclusion of equality constraints as before by quadratic 
penalty method.

Summary:

This is an efficient method for the solution of constrained 
problems.

minimize x   Q

x   =  f x   −  ∑

i

log h ix 
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Algorithms for penalty/barrier methods

Algorithm (exactly as for the equality constrained case):
Given 
For t=0,1, 2, ...:

Find approximation         to the (unconstrained) mimizer    

of                 that satisfies

using               as starting point.

Set t=t+1, 

Typical values:

x t
*

∥∇Q t
 x t

*
∥≤t

xt
*

Q t
 x

x0
start ,  { t }0,  { t}0

xt
start

xt
start
=xt−1

*

 t=c t−1 ,            c=0.1  to 0.5

 t=c t−1                                    
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The exact penalty method

Previous methods suffered from the fact that minimizers of  
Q

μ
(x)   for finite μ

  
are not optima of the original problem. 

Solution: Use

minimize x   


1
x   =  f  x

1
 [∑i ∣g ix ∣∑

i

∣[h ix ]
−
∣]

minimize f x =sinx         s.t.  x≥0,   x≤1

f x 


−1
=10


−1
=1 f x 


−1
=10


−1
=1


−1
=4
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The exact penalty method

Properties of the exact penalty method:
● for sufficiently small penalty parameter, the optimum of the 

modified problem is the optimum of the original one;
● possibly only one iteration in the penalty parameter needed 

if size of μ is known in advance;
● this is a non-smooth problem!

This is an efficient method 
if (but only if!) a solver for nonsmooth problems is available!
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Part 12

Theory of 
Inequality-Constrained 

Problems

minimize  f x
                 g i x    =   0,       i=1,... , ne

                 hix    ≥   0,       i=1,. .. , n i
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Lagrange multipliers

Consider a (single) constraint h(x) as a function for all x:

       h(x,z)=-0.1        h(x,z)=0         h(x,z)=0.1

h x =∥x− x0∥−L rod ≥ 0
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Lagrange multipliers

Now look at the objective function f(x):

f x =∑i=1

3 1
2

D ∥x−x i∥−L0 
2
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Lagrange multipliers

Both f(x), h(x) for the case of a rod of minimal length 20cm:

infeasible
region

                                 h(x,z)=0  with  L
rod

=20cm
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Lagrange multipliers

Could this be a solution x*?

Answer: No – moving into the feasible direction would also 
reduce f(x).

Rather, the solution will equal the unconstrained one, and the 
inequality constraint will be inactive at the solution.

x *
∇ f  x * ∇ h  x *
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Lagrange multipliers

Both f(x), h(x) for the case of a rod of minimal length 35cm:

infeasible
region

                                 h(x,z)=0  with  L
rod

=35cm
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Lagrange multipliers

Could this be a solution x*?

Answer: Yes – moving into feasible direction would increase f(x).

Note: The gradients of h and f are parallel and in the same 
direction.

x * ∇ f x * 
∇ h  x *
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Lagrange multipliers

Conclusion:
● Solution can be where the constraint is not active
● If the constraint is active at the solution: gradients of  f and h 

are parallel, but not antiparallel

In mathematical terms: The (local) solutions of 

are where one of the following conditions hold for some λ,μ:

                                                         or

minimize  f x =E x , z =∑i
E spring , ix , z Epot x , z 

                 h x =∥x−x0∥−Lrod   ≥   0

∇ f x −⋅∇ hx  = 0
hx                          =  0
                              ≥  0

∇ f x   = 0
h x      0
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Lagrange multipliers

Conclusion, take 2: Solutions are where either

                                                    or

which could also be written like so:

                                                 or

    (constraint is active)                           (constraint is inactive)

∇ f x −⋅∇ hx  = 0
hx                          =  0
                              ≥  0

∇ f x   = 0
h x      0

∇ f x −⋅∇ hx  = 0
hx                          =  0
                              ≥  0

∇ f x −⋅∇ hx   = 0
h x                          0
                              = 0
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Lagrange multipliers

Conclusion, take 3: Solutions are where

                                                  or

or written differently:

Note: The last condition is called complementarity.

∇ f x −⋅∇ hx  = 0
hx                          =  0
                              ≥  0

∇ f x −⋅∇ h x  = 0
hx                         ≥ 0
                             ≥ 0
 hx                       = 0

∇ f x −⋅∇ hx   = 0
h x                          0
                              = 0
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Lagrange multipliers

Same idea, but with two minimum length elements:

infeasible
region

                             h
1
(x,z)=0        h

2
(x,z)=0
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Lagrange multipliers

Could this be a solution x*?

Answer: No – moving into feasible direction would decrease f(x).

Note: The gradient of f is antiparallel to the gradient of h
1
. h

2
 is an 

inactive constraint so doesn't matter here.

x *∇ f x * 

∇h1 x *
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Lagrange multipliers

Same idea, but with two different minimum length elements:

infeasible
region

                             h
1
(x,z)=0        h

2
(x,z)=0
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Lagrange multipliers

Could this be a solution x*?

Answer: Yes – moving into feasible direction would increase f(x).

Note: The gradient of f is a linear combination (with positive 
multiples) of the gradients of h

1
 and h

2
.

x*

∇ f x * 

∇h1 x *
∇h2 x *
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Constraint Qualification: LICQ
Definition:
We say that at a point  x  the linear independence constraint 
qualification (LICQ) is satisfied if

is a set of linearly independent vectors.

Note: This is equivalent to saying that the matrix of gradients of all 
active constraints,

has full row rank (i.e. its rank is
                                                      n

e
 + # of active ineq. constraints).

{∇ gi  x}i=1 ... ne
,{∇ hi  x}i=1. ..ni ,i  active at x

A  = [
[∇ g1x ]

T

⋮

[∇ gne
x]T

[∇ h first active ix ]
T

⋮

[∇ h last active ix ]
T
]



415               Wolfgang Bangerth

First-order necessary conditions
Theorem:
Suppose that  x*  is a local solution of

and suppose that at this point the LICQ holds. Then there exist 
unique Lagrange multipliers so that these conditions are satisfied:

Note: These are often called the Karush-Kuhn-Tucker (KKT) 
conditions.

minimize  f  x                        f x :ℝn
ℝ

                 g  x   =   0,            g  x:ℝn
ℝ

ne

                 h x   ≥  0,            h  x:ℝn
ℝ

ni

∇ f  x−⋅∇ g x−⋅∇ h  x  =  0
g  x                          = 0
h x                          ≥  0
                               ≥  0
 i hi x                      = 0
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First-order necessary conditions

Note: By introducing a Lagrangian

the first two of the necessary conditions

follow from requiring that                                          , but not the 
rest.

Consequence: We can not hope to find simple Newton-based 
methods like SQP to solve inequality-constrained problems.

L x , , =f  x−T g x−T h x 

∇ f  x−⋅∇ g x−⋅∇ h  x  =  0
g  x                          = 0
h x                          ≥  0
                               ≥  0
 i hi x                      = 0

∇ z L z  with z={x , , }
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First-order necessary conditions

Note: The necessary conditions

imply that at x* there is a unique set of (active) Lagrange 
multipliers so that

where A is the matrix of gradients of active constraints. An 
alternative way of saying this is

However, the opposite is not true: Multipliers must also satisfy

∇ f  x−⋅∇ g x−⋅∇ h  x  =  0
g  x                          = 0
h x                          ≥  0
                               ≥  0
 i hi x                      = 0

∇ f ( x) ∈ span (rows of ( A))

 i≥0

∇ f ( x)=AT

( λ
[μ]active)
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First-order necessary conditions

A more refined analysis: Consider the constraints

Intuitively (consider the isocontours), the vertex point x* is optimal 
if the direction of steepest ascent             is a member of the family 
of red vectors above. That is, let F

0
 be the cone

Then x* is optimal if

∇ f  x

h1 x=x2−ax1≥0,            h2 x=x2ax1≥0

F 0(x *)= {w∈ℝn : w=μ1∇ h1(x *)+ μ2∇ h2(x *) , μ1≥0, μ2≥0}

∇ f  x * ∈ F0 x *
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First-order necessary conditions

A more refined analysis: Consider the constraints

Note: We can write things slightly different if we define

i.e. the set of vectors that form angles less than 90 degrees with 
all vectors in F

0
. This set can also be written as

F1x * = {w∈ℝn : wT a≥0 ∀ a∈F0 x *}

h1 x=x2−ax1≥0,            h2 x=x2ax1≥0

F1x * = {w∈ℝn : wT
∇ h1x *≥0, wT

∇ h2x *≥0}
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First-order necessary conditions

A more refined analysis: If the problem also has equality 
constraints

all of which are active at x*, then the cone F
1
 is 

In general:

Note: This is the cone of all feasible directions.

g x=0,            h1x≥0,            h2x ≥0

F1x * = {w∈ℝn : wT
∇ g  x *=0, wT

∇ h1 x *≥0, wT
∇ h2 x *≥0}

F1x * ={w∈ℝ
n : wT

∇ gi x * =0,   i=1,... ,n e                                             

              wT
∇ hi x * ≥0,   i=1,. .. , ni,  constraint i  is active at x *}
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First-order necessary conditions

Theorem (a different version of the first order necessary 
conditions): If x* is a local solution and if the LICQ hold at this 
point, then

In other words: Whatever direction w in F
1
 we go into from x*, the 

objective function to first order stays constant or increases.

Note: This is a necessary condition, but not sufficient. If f(x) stays 
constant to first order it may still decrease in higher order Taylor 
terms to make x* a local maximum or saddle point. But, if x* is a 
solution, then the condition above has to be satisfied.

∇ f  x *T w ≥ 0              ∀w∈F1 x* 
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Second-order necessary conditions

Definition: 
Let x* be a local solution of an inequality constrained problem 
satisfying

We say that strict complementarity holds if for each inequality 
constraint i  exactly one of the following conditions is true: 

●

●

In other words, we require that the Lagrange multiplier is nonzero 
for all active inequality constraints.

∇ f x −⋅∇ g x−⋅∇ g x   = 0                                       
gi x                          =  0,       i=1. ..ne

hix                           ≥ 0,       i=1. ..ni

i                               ≥ 0,       i=1. ..ni

i hix                       = 0,       i=1. ..ni

 i=0

hi x * =0
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Second-order necessary conditions

Definition: 
Let x* be a local solution and assume that strict complementarity 
holds. Then define as before

and the subspace of all tangential directions as

F2x * = {w∈ℝ
n : wT

∇ gi x * =0,   i=1,... , ne                                             

              wT
∇ hi  x* =0,   i=1,. .. , ni , constraint i  is active at x *}

F1x * F2x *

F1x * ={w∈ℝ
n : wT

∇ gi x * =0,   i=1,... ,n e                                             

              wT
∇ hi x * ≥0,   i=1,. .. , ni,  constraint i  is active at x *}
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Second-order necessary conditions

Note: 
The subspace of all tangential directions

can be trivial (i.e. contain only the zero vector) if n or more 
constraints are active at x*.

Example: 

Here, F
1
 is a nonempty set, but

F
2
 contains only the zero vector.

F2x * = {w∈ℝ
n : wT

∇ gi x * =0,   i=1,... , ne                                             

              wT
∇ hi  x* =0,   i=1,. .. , ni , constraint i  is active at x *}



425               Wolfgang Bangerth

Second-order necessary conditions

Theorem (necessary conditions): 
Let x* be a local solution that satisfies the first order necessary 
conditions with unique Lagrange multipliers. Assume that strict 
complementarity holds. Then

Note:  This means that f(x) can not
“curve down” to second order along
tangential directions. The first order
Conditions imply that it doesn't “slope”
in these directions.

wT
∇ x

2 L x* ,* , *w=                                                                              

      =wT [∇ x
2 f  x *−*T

∇ x
2 g x *−*∇ x

2h  x * ]w   ≥  0
                                                                                             ∀w∈F2x * 

F2x *
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Second-order sufficient conditions

Theorem (sufficient conditions): 
Let x* be a local solution that satisfies the first order necessary 
conditions with unique Lagrange multipliers. Assume that strict 
complementarity holds. Then

Note:  This means that f(x) actually
“curves up” in a neighborhood of x*,
at least in tangential directions!

For all other directions, we know that f(x)
slopes up from the first order necessary conditions.

wT
∇ x

2 L x * ,* ,*w=                                                                             

      =wT [∇ x
2 f  x *−*T

∇ x
2 g x *−*∇x

2h  x * ]w     0
                                                                                        ∀w∈F2 x* ,w≠0

F2x *
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Second-order sufficient conditions

Remark: 
If strict complementarity holds, then the definition

is equivalent to

with the matrix of gradients of active constraints A. If A does have 
a null space, then the second order necessary and sufficient 
conditions can also be written as

respectively, where the columns of Z are a basis of the null space 
of A.

Z T
∇ x

2 L x * ,* , *Z   is positive semidefinite

Z T∇ x
2 L x * ,* , *Z   is positive definite        

F2x * = {w∈ℝ
n : wT

∇ gi x * =0,   i=1,... , ne                                             

              wT
∇ hi  x* =0,   i=1,. .. , ni , constraint i  is active at x *}

F2x * = null A x * 
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Second-order necessary conditions

Definition (if strict complementarity does not hold): 
Let x* be a local solution at which the KKT conditions with unique 
Lagrange multiplier hold. Then define

F2x * ,* = {
w∈ℝn : wT

∇ gi x* =0,   i=1,. .. , ne                                             

              wT
∇ hi x *=0,   i=1,. .. , ni ,  constraint i  active and  i *0

              wT∇ hi x *≥0,   i=1,. .. , ni ,  constraint i  active and  i *=0}

F1x * F2x * ,* 
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Second-order sufficient conditions

Theorem (sufficient conditions w/o strict complementarity): 
Let x* be a local solution that satisfies the first order necessary 
conditions with unique Lagrange multipliers. Assume that strict 
complementarity does not hold. Then

Note:  This now means that f(x) actually
“curves up” in a neighborhood of x*,
at least in tangential directions plus all
those directions for which we can't infer
anything from the first order conditions!

wT
∇ x

2 L (x * ,λ * ,μ *)w=                                                                              

      =wT [∇ x
2 f (x *)−λ*T ∇x

2 g (x *)−μ*∇ x
2 h(x *)]w   >  0

                                                                                         ∀w∈F 2(x *) , w≠0

F2x *
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Part 13

Active Set Methods for 
Convex Quadratic Programs

minimize  f x =
1
2

xT G xxT de

                 gix =ai
T x−bi   =   0,       i=1,. .., ne

                 hi x =i
T x−i   ≥   0,       i=1,. .. , ni
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General idea

Note: 
Recall that if W* is the set of active (equality and inequality) 
constraints at the solution x* then the solution of

equals the solution of the following QP:

minimize  f  x= 1
2

xT G xxT de

                 gi x=ai
T x−bi   =   0,       i=1,... , ne

                 hi x=i
T x− i   ≥  0,       i=1,. .. , ni

minimize  f x =
1
2

xT G xxT de

                 gi x=ai
T x−bi   =  0,       i=1,... ,n e

                 hi x=i
T x−i   =   0,       i=1,. .. , ni ,i∈W *
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General idea

Definition: Let

then the solution of the inequality-constrained QP equals the 
solution of the following QP:

A=
a1

T

⋮

ane

T

1
T

⋮

ni

T


minimize  f x =
1
2

xT G xxT de

                 A |W * x−B |W *   =  0

A |W=
a1

T

⋮

ane

T

first inequality in W
T

⋮

last inequality inW
T

B=
b1

⋮
bne

1

⋮

ni

 B |W=
b1

⋮
bn e

first inequality in W

⋮

last inequality inW


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General idea

Consequence: If we knew the active set W* at the solution, we 
could just solve the linearly constrained QP

and be done in one step.

Problem: Knowing the exact active set W* requires knowing the 
solution x* because W* is the set of all equality constraints plus 
those constraints for which

Solution: Solve a sequence of QPs using working sets W
k
 that we 

iteratively refine until we have the exact active set W*.

minimize  f x =
1
2

xT G xxT de

                 A |W * x−B |W *   =  0

hi x *=0
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The active set algorithm

Algorithm: 

● Choose initial working set W
0
  and feasible point x

0
 

● For k=0, 1, 2, ....:
- Find search direction  p

k
 from x

k
 to the solution x

k+1
 of the QP

- If p
k
=0 and all μ

i
≥0 for constraints in W

k
 then stop

- Else if p
k
=0 but there are μ

i
<0, then drop inequality with the

   most negative μ
i
 from W

k
 to obtain W

k+1

- Else if x
k
+p

k
 is feasible then set x

k+1
=x

k
+p

k

- Otherwise, set x
k+1

=x
k
+α

k
p

k
 with

   and add the most blocking constraint to W
k+1

minimize  f x =
1
2

xT G xxT de

                 A |Wk
x−B |Wk

  =   0

k=min {1, min
i∉Wk ,i

T pk0

 i− i
T xk

i
T pk

}
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The active set algorithm

Example: 

Choose as initial working set W
0
={3,5} and as starting point 

x
0
=(2,0)T.

minimize  f x = x1−12 x2−2.5 2

                 
1 −2
−1 −2
−1 2
1 0
0 1

 x−
−2
−6
−2
0
0
≥0 h

1
h

2

h
3

h
5

h
4
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The active set algorithm

Example: Step 0

W
0
={3,5}, x

0
=(2,0)T.

Then: p
0
=(0,0)T because no other point is feasible for W

0

                                                            implies

Consequently: W
1
={5}, x

1
=(2,0)T.

∇ f  x0− |W 0

T A |W 0
= 2
−5−3

5


T

−1 2
0 1=0 3

5
=−2
−1 

h
1

h
2

h
3

h
5

h
4
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The active set algorithm

Example: Step 1

W
1
={5}, x

1
=(2,0)T.

Then: p
1
=(-1,0)T leads to minimum along only active constraint.

There are no blocking constraints to get to the point x
k+1

=x
k
+p

k

                                                               

Consequently: W
2
={5}, x

2
=(1,0)T.

h
1

h
2

h
3

h
5

h
4
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The active set algorithm

Example: Step 2

W
2
={5}, x

2
=(1,0)T.

Then: p
2
=(0,0)T because we are at minimum of active constraints.  

                                               
                                                                  implies

Consequently: W
3
={}, x

3
=(1,0)T.

∇ f x2− |W 2

T A |W2
= 0
−5− 5 

T
0 1 =0 5 =−5 

h
1

h
2

h
3

h
5

h
4
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The active set algorithm

Example: Step 3

W
3
={}, x

3
=(1,0)T.

Then: p
3
=(0,2.5)T but this leads out of feasible region. The first 

blocking constraint is inequality 1, and the maximal step length is

Consequently: W
4
={1}, x

4
=(1,1.5)T.

3=0.6

h
1

h
2

h
3

h
5

h
4
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The active set algorithm

Example: Step 4

W
4
={1}, x

4
=(1,1.5)T.

Then: p
4
=(0.4,0.2)T is the minimizer along the sole constraint. 

There are no blocking constraints to get there.

Consequently: W
5
={1}, x

5
=(1.4,1.7)T.

h
1

h
2

h
3

h
5

h
4
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The active set algorithm

Example: Step 5

W
5
={1}, x

5
=(1.4,1.7)T.

Then: p
5
=(0,0)T because we are already on the minimizer on the 

constraint. Furthermore,

                                                                       implies

Consequently: This is the solution.

∇ f x5− |W 5

T A |W5
= 0.8
−1.6−1 

T
1 −2 =0 1 =0.8 ≥0

h
1

h
2

h
3

h
5

h
4
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The active set algorithm

Theorem:
If G is strictly positive definite (i.e. the objective function is strictly 
convex), then W

k
≠W

l
   for k ≠ l.

Consequently (because there are only finitely many possible 
working sets), the active set algorithm terminates in a finite 
number of steps.

Note:
In practice it may be that G is indefinite, and that for some 
iterations the matrix Z

k

TGZ
k 
is indefinite as well. We know that at 

the solution, Z
*

TGZ
*
 is positive semidefinite, however. In that case, 

we can't guarantee termination or convergence.

There are, however, Hessian modification techniques to deal with 
this situation.
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The active set algorithm

Remark:
In the active set method, we only change the working set W

k
 by at 

most one element in each iteration.

One may be tempted to remove all constraints with negative 
Lagrange multipliers at once, or add several constraints at the 
same time when they become active. 

However, we can then no longer guarantee that W
k
≠W

l
   for k ≠ l 

and cycling may happen, i.e. we cycle between the same points 
and sets x

k
, W

k
.



444               Wolfgang Bangerth

Active set SQP methods for general nonlinear problems

For equality constrained problems of the form

we used the SQP method. It repeatedly solves linear-quadratic 
problems of the form

Here, each subproblem (a single SQP step) could be solved in 
one iteration by solving a saddle point linear system.

minx  mk pk
x
=L xk ,k ∇x L xk ,k

T p k
x


1
2

pk
xT
∇ x

2 L xk ,k  pk
x

         g xk ∇ g xk 
T pk

x  =  0                             

minimize  f (x)                        f (x):ℝn
→ℝ

                g (x)   =  0,            g (x):ℝn
→ℝ

n e
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Part 14

Active Set SQP Methods

minimize  f (x )
                 g i (x )   =   0,       i=1,. .. , ne

                 h i(x )   ≥   0,       i=1,. .. , n i
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For inequality constrained problems of the form

we repeatedly solve linear-quadratic problems of the form

Each of these inequality constrained quadratic problems can be 
solved using the active set method, and after we have the 
exact solution of this approximate problem we can re-linearize 
around this point for the next sub-problem.

min x  mk pk
x
=L xk ,k ∇ x L xk ,k 

T pk
x


1
2

pk
xT
∇ x

2 L xk ,k pk
x

         g xk ∇ g xk
T pk

x  =  0                             

         h xk∇ h xk 
T pk

x  ≥  0                             

minimize  f  x
                 gi x   =  0,       i=1,. .. , ne

                 hi x   ≥   0,       i=1,... , ni

Active set SQP methods for general nonlinear problems
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Note: Each time we solve a problem like

we have to do several active set iterations, though we can start 
with the previous step's final working set and solution point.

Nevertheless, this is not going to be cheap, though it is 
comparable to iterating over penalty/barrier parameters.

minx  mk pk
x
=L xk ,k ∇ x Lxk ,k 

T pk
x


1
2

pk
xT
∇ x

2 Lx k ,k pk
x

         g xk ∇ g xk
T pk

x  =  0                             

         hxk∇ h  xk 
T pk

x  ≥  0                             

Active set SQP methods for general nonlinear problems
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Parts 11-14

Summary of methods for 
inequality-constrained problems

minimize  f x
                 g i x    =   0,       i=1,... , ne

                 hix    ≥   0,       i=1,. .. , n i
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Summary of methods

Two approaches to inequality-constrained problems:
● Penalty/barrier methods:

Convert the constrained problem into an unconstrained 
one that can be solved with known techniques.

Barrier methods ensure that intermediate iterates remain 
feasible with respect to inequality constraints

● Lagrange multiplier formulations lead to active set 
methods

● Both kinds of methods are expensive. Penalty/barrier 
methods are simpler to implement but can only find 
minima located at the boundary of the feasible set at the 
price of dealing with ill-conditioned problems.
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Part 15

Global optimization

minimize  f x
                 g i x    =   0,       i=1,... , ne

                 hix    ≥   0,       i=1,. .. , n i
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Motivation

What should we do when asked to find the (global) minimum 
of functions like this:

f  x= 1
20
 x1

2x2
2cos  x1cos  x2
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A naïve sampling approach

Naïve approach: Sample at M-by-M points and choose the 
one with the smallest value.

Alternatively: Start Newton's method at each of these points to 
get higher accuracy.

Problem: If we have n variables, then we would have to start 
at Mn points. This becomes prohibitive for large n!
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Monte Carlo sampling

A better strategy (“Monte Carlo” sampling):

● Start with a feasible point

● For k=0,1,2,...:
- Choose a trial point

- If                            then                 [accept the sample]

- Else:
. draw a random number  s  in  [0,1]
. if 

  then
                       [accept the sample]

  else
   [reject the sample]

x0

xt

f  x t≤ f xk  xk1=x t

exp [− f  xt − f xk 

T ] ≥ s

xk1=x t

xk1=xk
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Monte Carlo sampling

Example: The first 200 sample points
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Monte Carlo sampling

Example: The first 10,000 sample points
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Monte Carlo sampling

Example: The first 100,000 sample points
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Monte Carlo sampling

Example: Locations and values of the first 105 sample points
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Monte Carlo sampling

Example: Values of the first 100,000 sample points

Note: The exact minimal value is -1.1032... . In the first 
100,000 samples, we have 24 with values  f(x)<-1.103.
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Monte Carlo sampling

How to choose the constant T:

● If T is chosen too small, then the condition 

will lead to frequent rejections of sample points for which 
f(x) increases. 
Consequently, we will get stuck in local minima for long 
periods of time before we accept a sequence of steps that 
gets “us over the hump”.

● On the other hand, if T is chosen too large, then we will 
accept nearly every sample, irrespective of f(x

t 
).

Consequently, we will perform a random walk that is no 
more efficient than uniform sampling.

exp [− f  xt − f xk 

T ] ≥ s ,            s∈U [0,1 ]
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Monte Carlo sampling

Example: First 100,000 samples, T=0.1
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Monte Carlo sampling

Example: First 100,000 samples, T=1
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Monte Carlo sampling

Example: First 100,000 samples, T=10
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Monte Carlo sampling

Strategy: Choose T large enough that there is a reasonable 
probability to get out of local minima; but small enough that this 
doesn't happen too often.

Example: For                                                                   

the difference in function value between local minima and 
saddle points is around 2. We want to choose T so that

is true maybe 10% of the time.

This is the case for T=0.87.

f  x= 1
20
 x1

2x2
2cos  x1cos  x2

exp [− f
T ] ≥ s ,            s∈U [0,1 ]
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Monte Carlo sampling

How to choose the next sample x
t
:

● If x
t
 is chosen independently of x

k
 then we just sample the 

entire domain, without exploring areas where f(x) is small.
Consequently, we should choose x

t
 “close” to  x

k
. 

● If we choose x
t
 too close to x

k
 we will have a hard time 

exploring a significant part of the feasible region.

● If we choose x
t
 in an area around  x

k
 that is too large, then 

we don't adequately explore areas where f(x) is small.

Common strategy: Choose

where σ  is a fraction of the diameter of the domain or the 
distance between local minima.

xt=x k y ,         y∈N 0, I  or U [−1,1]n
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Monte Carlo sampling

Example: First 100,000 samples, T=1, σ=0.05
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Monte Carlo sampling

Example: First 100,000 samples, T=1, σ=0.25
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Monte Carlo sampling

Example: First 100,000 samples, T=1, σ=1
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Monte Carlo sampling

Example: First 100,000 samples, T=1, σ=4
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Monte Carlo sampling with constraints

Inequality constraints: 
● For simple inequality constraints, modify sample 

generation strategy to never generate infeasible trial 
samples

● For complex inequality constraints, always reject samples 
for which

hi x t0       for at least one i
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Monte Carlo sampling with constraints

Inequality constraints: 
● For simple inequality constraints, modify the sample 

generation strategy to never generate infeasible trial 
samples

● For complex inequality constraints, always reject samples:
- If                            then

- Else:
. draw a random number  s  in  [0,1]
. if 

  then

  else

where

Q xt ≤Q xk  xk1=x t

exp [−Q xt −Q xk

T ] ≥ s

xk1=x t

xk1=xk

Q x=∞  if at least one hi  x0,           Q x =f  xotherwise
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Monte Carlo sampling with constraints

Equality constraints: 
● Generate only samples that satisfy equality constraints

● If we have only linear equality constraints of the form

then one way to guarantee this is to generate samples 
using

where Z is the null space matrix of A, i.e. AZ=0.

g x=Ax−b=0

xt=x k Z y ,            y∈ℝn−ne ,    y=N 0, I or U [−1,1]n−ne
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Monte Carlo sampling

Theorem:
Let A be a subset of the feasible region. Under certain 
conditions on the sample generation strategy, then as              
we have 

That is: Every region A will be adequately sampled over time. 
Areas around the global minimum will be better sampled than 
other regions.

In particular,

number of samples x k∈ A   ∝   ∫A
e
−

f (x)
T dx

k∞

fraction of samples x k∈A   =   1
C∫A

e
−

f (x)
T dx+ O( 1

√N )
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Monte Carlo sampling

Remark:
Monte Carlo sampling appears to be a strategy that bounces 
around randomly, only taking into account the values (not the 
derivatives) of f(x).

However, that is not so if sample generation strategy and T 
are chosen carefully: Then we choose a new sample 
moderately close to the previous one, and we always accept it 
if f(x) is reduced, whereas we only sometimes accept it if f(x) 
is increased by this step.

In other words: On average we still move in the direction of 
steepest descent!
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Monte Carlo sampling

Remark:
Monte Carlo sampling appears to be a strategy that bounces 
around randomly, only taking into account the values (not the 
derivatives) of f(x).

However, that is not so – because it compares function values.

That said: One can accelerate the Monte Carlo method by 
choosing samples from a distribution that is biased towards 
the negative gradient direction if the gradient is cheap to 
compute.

Such methods are sometimes called Langevin samplers.
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Simulated Annealing

Motivation:
Particles in a gas, or atoms in a crystal have an energy that is 
on average in equilibrium with the rest of the system. At any 
given time, however, its energy may be higher or lower.

In particular, the probability that its energy is E is

Where k
B
 is the Boltzmann constant. Likewise, probability that 

a particle can overcome an energy barrier of height  ΔE  is

This is exactly the Monte Carlo transition probability if we 
identify

PE   ∝   e
−

E
kB T

PEE E   ∝   min {1, e
−
 E
kB T }   =  {

1 if  E≤0

e
−
 E
k B T  if  E0}

E = f kB
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Simulated Annealing

Motivation:
In other words, Monte Carlo sampling is analogous to 
watching particles bounce around in a potential  f(x)  when 
driven by a gas at constant temperature.

On the other hand, we know that if we slowly reduce the 
temperature of a system, it will end up in the ground state with 
very high probability. For example, slowly reducing the 
temperature of a melt results in a perfect crystal. (On the other 
hand, reducing the temperature too quickly results in a glass.)

The Simulated Annealing algorithm uses this analogy by using 
the modified transition probability

exp [− f  xt − f xk 

T k
] ≥ s ,        s∈U [0,1 ],      T k0  as k∞
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Simulated Annealing

Example: First 100,000 samples,  σ=0.25

T=1 T k=
1

110−4 k
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Simulated Annealing

Example: First 100,000 samples,  σ=0.25

  24 samples with f(x)<-1.103         192 samples with f(x)<-1.103

T=1 T k=
1

110−4 k
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Simulated Annealing

Convergence: First 1,500 samples, 

(Green line indicates the lowest function value found so far)

T=1 T k=
1

10.005 k

f x =∑i=1

2 1
20

x i
2
cos x i
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Simulated Annealing

Convergence: First 10,000 samples, 

(Green line indicates the lowest function value found so far)

T=1 T k=
1

10.0005k

f x=∑
i=1

10 1
20

x i
2cos xi
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Simulated Annealing

Discussion:
Simulated Annealing is often more efficient in finding global 
minima because it initially explores the energy landscape at 
large, and later on explores the areas of low energy in greater 
detail.

On the other hand, there is now another knob to play with 
(namely how we reduce the temperature):
● If the temperature is reduced too fast, we may get stuck in 

local minima (the “glass” state)
● If the temperature is not reduced fast enough, the 

algorithm is no better than Monte Carlo sampling and may 
require many many samples.
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Very Fast Simulated Annealing (VFSA)

A further refinement:
In Very Fast Simulated Annealing we not only reduce 
temperature over time, but also reduce the search radius of 
our sample generation strategy, i.e. we compute

and let

Like reducing the temperature, this ensures that we sample 
the vicinity of minima better and better over time.

Remark: To guarantee that the algorithm can reach any point 
in the search domain, we need to choose       so that

xt=x kk y ,         y∈N 0, I  or U [−1,1]n

k0

k

∑k=0

∞

k=∞
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Genetic Algorithms (GA)

An entirely different idea:
Choose a set (“population”) of N points (“individuals”)  
P

0
={x

1
,...x

N
}

For k=0,1,2,... (“generations”):
● Copy those N

f
<N individuals in P

k
 with the smallest  f(x)  (i.e. 

the “fittest individuals”) into P
k+1

● While #P
k+1

<N:

- select two individuals (“parents”) x
a
,x

b
 from

among the first N
f 
 individuals in  P

k+1
 with probabilities

       proportional to 
- create a new point  x

new
  from x

a
,x

b
 (“mating”)

- perform some random changes on x
new

 (“mutation”)

- add it to P
k+1

e− f x i/T
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Genetic Algorithms (GA)

Example: Populations at k=0,1,2,5,10,20, N=500, N
s
=2/3 N
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Genetic Algorithms (GA)

Convergence: Values of the N samples for all generations k

f x=∑
i=1

10 1
20

x i
2cos xif x=∑i=1

2 1
20

x i
2cos xi
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Genetic Algorithms (GA)

Mating: 
● Mating is meant to produce new individuals that share the 

traits of the two parents
● If the variable x encodes real values, then mating could just 

take the mean value of the parents:

● For more general properties (paths through cities, which of M 
objects to put where in a suitcase, …) we have to encode x in 
a binary string. Mating may then select bits (or bit sequences) 
randomly from each of the parents

● There is a huge variety of encoding and selection strategies 
in the literature.

xnew=
xaxb

2
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Genetic Algorithms (GA)

Mutation:
● Mutations are meant to introduce an element of randomness 

into the process, to explore search directions that aren't 
represented yet in the population

● If the variable x represents real values, we can just add a 
small random value to x to simulate mutations

● For more general properties, mutations can be introduced by 
randomly flipping individual bits or bit sequences in the 
encoded properties

● There is a huge variety of mutation strategies in the literature.

xnew=
xaxb

2
 y ,      y∈ℝ

n
,   y=N 0, I 
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Part 15

Summary of 
global optimization methods

minimize  f x
                 g i x    =   0,       i=1,... , ne

                 hix    ≥   0,       i=1,. .. , n i
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Summary of methods

● Global optimization problems with many minima are 
difficult because of the curse of dimensionality: the 
number of places where a minimum could be becomes 
very large if the number of dimensions becomes large

● There is a large zoo of methods for these kinds of 
problems

● Most algorithms are stochastic to sample feasible region

● Algorithms also work for non-smooth problems

● Most methods are not very effective (if one counts number 
of function evaluations) in return for the ability to get out of 
local minima

● Global optimization algorithms should never be used 
whenever we know that the problem has only a small 
number of minima and/or is smooth and convex
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