
49 Wolfgang Bangerth

Part 1

Examples of optimization
problems

50 Wolfgang Bangerth

Let X be a Banach space; let
 f : X→R{+}
 g: X→Rne

 h: X→Rni

be functions on X, find x ∈ X so that

Questions: Under what conditions on X, f, g, h can we
guarantee that (i) there is a solution; (ii) the solution is unique;
(iii) the solution is stable.

Mathematically speaking:

 f (x) → min!
g (x) = 0
h(x) ≥ 0

What is an optimization problem?

51 Wolfgang Bangerth

What is an optimization problem?

● x={u,y} is a set of design and auxiliary variables that
completely describe a physical, chemical,
economical model;

● f(x) is an objective function with which we measure how
good a design is;

● g(x) describes relationships that have to be met exactly
(for example the relationship between y and u)

● h(x) describes conditions that must not be exceeded

Then find me that x for which

Question: How do I find this x?

In practice:

 f (x) → min!
g (x) = 0
h(x) ≥ 0

52 Wolfgang Bangerth

What is an optimization problem?

Optimization problems are often subdivided into classes:

Linear vs. Nonlinear

Convex vs. Nonconvex

Unconstrained vs. Constrained

Smooth vs. Nonsmooth

With derivatives vs. Derivativefree

Continuous vs. Discrete

Algebraic vs. ODE/PDE

Depending on which class an actual problem falls into, there are
different classes of algorithms.

53 Wolfgang Bangerth

Examples

Linear and nonlinear functions f(x)
on a domain bounded by linear inequalities

54 Wolfgang Bangerth

Examples

Strictly convex, convex, and nonconvex functions f(x)

55 Wolfgang Bangerth

Another non-convex function with many (local) optima.
We may want to find the one global optimum.

Examples

56 Wolfgang Bangerth

Optima in the presence of (nonsmooth) constraints.

Examples

57 Wolfgang Bangerth

Smooth and non-smooth nonlinear functions.

Examples

58 Wolfgang Bangerth

Mathematical description:
x={u,y}: u are the design parameters (e.g. the shape of the car)

y is the flow field around the car

f(x): the drag force that results from the flow field

g(x)=y-q(u)=0:
constraints that come from the fact that there is a flow
field y=q(u) for each design. y may, for example, satisfy
the Navier-Stokes equations

Applications: The drag coefficient of a car

59 Wolfgang Bangerth

Inequality constraints:
(expected sales price – profit margin) - cost(u) ≥ 0

volume(u) – volume(me, my wife, and her bags) ≥ 0

material stiffness * safety factor
- max(forces exerted by y on the frame) ≥ 0

legal margins(u) ≥ 0

Applications: The drag coefficient of a car

60 Wolfgang Bangerth

Analysis:
linearity: f(x) may be linear

g(x) is certainly nonlinear (Navier-Stokes equations)
h(x) may be nonlinear

convexity: ??

constrained: yes

smooth: f(x) yes
g(x) yes
h(x) some yes, some no

derivatives: available, but probably hard to compute in practice

continuous: yes, not discrete

ODE/PDE: yes, not just algebraic

Applications: The drag coefficient of a car

61 Wolfgang Bangerth

Remark:

In the formulation as shown, the objective function was of the form

f(x) = c
d
(y)

In practice, one often is willing to trade efficiency for cost, i.e. we are
willing to accept a slightly higher drag coefficient if the cost is smaller.
This leads to objective functions of the form

f(x) = c
d
(y) + a cost(u)

or

f(x) = c
d
(y) + a[cost(u)]2

Applications: The drag coefficient of a car

62 Wolfgang Bangerth

Applications: Optimal oil production strategies
Permeability field

Mathematical description:
x={u,y}: u are the pumping rates at injection/production wells

y is the flow field (pressures/velocities)

f(x): the cost of production and injection minus sales price of
oil integrated over lifetime of reservoir (or -NPV)

g(x)=y-q(u)=0:
constraints that come from the fact that there is a flow
field y=q(u) for each u. y may, for example, satisfy
the multiphase porous media flow equations

Oil saturation

63 Wolfgang Bangerth

Applications: Optimal oil production strategies

Inequality constraints h(x)≥0:

U
imax

-u
i
 ≥ 0 (for all wells i):

Pumps have a maximal pumping rate/pressure

produced_oil(T)/available_oil(0) – c ≥ 0:
Legislative requirement to produce at least
a certain fraction

c - water_cut(t) ≥ 0 (for all times t):
It is inefficient to produce too much water

pressure – d ≥ 0 (for all times and locations):
Keeps the reservoir from collapsing

64 Wolfgang Bangerth

Applications: Optimal oil production strategies

Analysis:
linearity: f(x) is nonlinear

g(x) is certainly nonlinear
h(x) may be nonlinear

convexity: no

constrained: yes

smooth: f(x) yes
g(x) yes
h(x) yes

derivatives: available, but probably hard to compute in practice

continuous: yes, not discrete

ODE/PDE: yes, not just algebraic

65 Wolfgang Bangerth

Applications: Switching lights at an intersection

Mathematical description:
x={T, t

i

1, t
i

2}: round-trip time T for the stop light system,

switch-green and switch-red times for all lights i

f(x): number of cars that can pass the intersection per
hour;

Note: unknown as a function, but we can measure it

66 Wolfgang Bangerth

Applications: Switching lights at an intersection

Inequality constraints h(x)≥0:

300 – T ≥ 0:
No more than 5 minutes of round-trip time, so that people
don't have to wait for too long

t
2i
-t

1i
 – 5 ≥ 0 (for all lights i):

At least 5 seconds of green for everyone

t
1(i+1)

-t
2i
 – 5 ≥ 0:

At least 5 seconds of all-red between different greens

67 Wolfgang Bangerth

Applications: Switching lights at an intersection

Analysis:

linearity: f(x) ??
h(x) is linear

convexity: ??

constrained: yes

smooth: f(x) ??
h(x) yes

derivatives: not available

continuous: yes, not discrete

ODE/PDE: no

68 Wolfgang Bangerth

Applications: Trajectory planning

Mathematical description:
x={y(t),u(t)}: position of spacecraft and thrust vector at time t

minimize fuel consumption

Newton's law

Do not get too close to the sun

Only limited thrust available

m ÿ t −u t =0

f  x=∫0

T
∣u t ∣dt

∣y t ∣−d 0≥0

umax−∣u t ∣≥0

69 Wolfgang Bangerth

Applications: Trajectory planning

Analysis:

linearity: f(x) is nonlinear
g(x) is linear
h(x) is nonlinear

convexity: no
constrained: yes
smooth: yes, here
derivatives: computable
continuous: yes, not discrete

ODE/PDE: yes

Note: Trajectory planning problems are often called optimal
control.

70 Wolfgang Bangerth

Applications: Data fitting 1

Mathematical description:
x={a,b}: parameters for the model

f(x)=1/N ∑
i
 |y

i
-y(t

i
)|2:

mean square difference between predicted value
and actual measurement

y t =
1
a

log cosh ab t 

71 Wolfgang Bangerth

Applications: Data fitting 1

Analysis:
linearity: f(x) is nonlinear

convexity: ?? (probably yes)

constrained: no

smooth: yes

derivatives: available, and easy to compute in practice

continuous: yes, not discrete

ODE/PDE: no, algebraic

72 Wolfgang Bangerth

Applications: Data fitting 2

Mathematical description:
x={a,b}: parameters for the model

f(x)=1/N ∑
i
 |y

i
-y(t

i
)|2:

mean square difference between
predicted value and actual measurement

y t =atb

73 Wolfgang Bangerth

Applications: Data fitting 2

Analysis:
linearity: f(x) is quadratic

Convexity: yes

constrained: no

smooth: yes

derivatives: available, and easy to compute in practice

continuous: yes, not discrete

ODE/PDE: no, algebraic

Note: Quadratic optimization problems (even with linear
constraints) are easy to solve!

74 Wolfgang Bangerth

Applications: Data fitting 3

Mathematical description:
x={a,b}: parameters for the model

f(x)=1/N ∑
i
 |y

i
-y(t

i
)|:

mean absolute difference between predicted
value and actual measurement

y t =atb

75 Wolfgang Bangerth

Applications: Data fitting 3

Analysis:
linearity: f(x) is nonlinear

Convexity: yes

constrained: no

smooth: no!

derivatives: not differentiable

continuous: yes, not discrete

ODE/PDE: no, algebraic

Note: Non-smooth problems are really hard to solve!

76 Wolfgang Bangerth

Applications: Data fitting 3, revisited

Mathematical description:
x={a,b, s

i
}: parameters for the model

“slack” variables s
i

f(x)=1/N ∑
i
 s

i
 → min!

s
i
 - |y

i
-y(t

i
)| ≥ 0

y t =atb

77 Wolfgang Bangerth

Applications: Data fitting 3, revisited

Analysis:
linearity: f(x) is linear, h(x) is not linear

Convexity: yes

constrained: yes

smooth: no!

derivatives: not differentiable

continuous: yes, not discrete

ODE/PDE: no, algebraic

Note: Non-smooth problems are really hard to solve!

78 Wolfgang Bangerth

Applications: Data fitting 3, re-revisited

Mathematical description:
x={a,b, s

i
}: parameters for the model

“slack” variables s
i

f(x)=1/N ∑
i
 s

i
 → min!

s
i
 - |y

i
-y(t

i
)| ≥ 0 s

i
 - (y

i
-y(t

i
)) ≥ 0

s
i
 + (y

i
-y(t

i
)) ≥ 0

y t =atb

79 Wolfgang Bangerth

Applications: Data fitting 3, re-revisited

Analysis:
linearity: f(x) is linear, h(x) is now also linear

Convexity: yes

constrained: yes

smooth: yes

derivatives: yes

continuous: yes, not discrete

ODE/PDE: no, algebraic

Note: Linear problems with linear constraints are simple to
solve!

80 Wolfgang Bangerth

Applications: Traveling salesman

Mathematical description:
x={c

i
}: the index of the ith city on our trip, i=1...N

f(x)=

no city is visited twice (alternatively:)

Task: Find the shortest tour
through N cities with mutual
distances d

ij
.

(Here: the 15 biggest cities of
Germany; there are 43,589,145,600
possible tours through all these cities.)

∑i
d ci c i1

ci≠c j for i≠ j ci c j≥1

81 Wolfgang Bangerth

Applications: Traveling salesman

Analysis:
linearity: f(x) is linear, h(x) is nonlinear

Convexity: meaningless

constrained: yes

smooth: meaningless

derivatives: meaningless

continuous: discrete:

ODE/PDE: no, algebraic

Note: Integer problems (combinatorial problems) are often
exceedingly complicated to solve!

x∈X⊂{1,2,. .. , N }N

82 Wolfgang Bangerth

Part 2

Minima, minimizers,
sufficient and necessary

conditions

83 Wolfgang Bangerth

Part 3

Metrics of algorithmic
complexity

84 Wolfgang Bangerth

All algorithms to find minima of f(x) do so iteratively:

- start at a point

- for k=1,2,..., :
 . compute an update direction

 . compute a step length

 . set

 . set

Outline of optimization algorithms

x0

pk

k

xk xk−1k pk

k k1

85 Wolfgang Bangerth

All algorithms to find minima of f(x) do so iteratively:

- start at a point

- for k=1,2,..., :
 . compute an update direction

 . compute a step length

 . set

 . set

Questions:

 - If is the minimizer that we are seeking,
does ?

 - How many iterations does it take for ?

 - How expensive is every iteration?

Outline of optimization algorithms

x *
xk x *

∥xk−x *∥≤

x0

pk

k

xk xk−1k pk

k k1

86 Wolfgang Bangerth

The cost of optimization algorithms is dominated by evaluating
f(x), g(x), h(x) and derivatives:

● Traffic light example: Evaluating f(x) requires us to sit at an
intersection for an hour, counting cars

● Designing air foils: Testing an improved wing design in a
wind tunnel costs millions of dollars.

How expensive is every iteration?

87 Wolfgang Bangerth

Example: Boeing wing design

Planes today are 30% more efficient than those developed in
the 1970s. Optimization in the wind tunnel and in silico made
that happen but is very expensive.

How expensive is every iteration?

Boeing 767 (1980s)

50+ wing designs
tested in wind tunnel

Boeing 777 (1990s)

18 wing designs
tested in wind tunnel

Boeing 787 (2000s)

10 wing designs
tested in wind tunnel

88 Wolfgang Bangerth

Practical algorithms:

To determine the search direction
● Gradient (steepest descent) method requires 1 evaluation

of per iteration
● Newton's method requires 1 evaluation of and

1 evaluation of per iteration

● If derivatives can not be computed exactly, they can be
approximated by several evaluations of and

To determine the step length
● Both gradient and Newton method typically require several

evaluations of and potentially per iteration.

How expensive is every iteration?

pk

k

∇ f ⋅
∇ f ⋅

f ⋅

∇
2 f ⋅

∇ f ⋅

∇ f ⋅f ⋅

89 Wolfgang Bangerth

Question: Given a sequence (for which we know
that), can we determine exactly how fast the error
goes to zero?

How many iterations do we need?

xk x *
∥xk−x *∥0

∥x k− x *∥

k

90 Wolfgang Bangerth

Definition: We say that a sequence is of order s if

A sequence of numbers is called of order s if

C is called the asymptotic constant. We call gain factor.

Specifically:

 If s=1, the sequence is called linearly convergent.
Note: Convergence requires C<1. In a singly logarithmic plot,
linearly convergent sequences are straight lines.

 If s=2, we call the sequence quadratically convergent.

 If 1<s<2, we call the sequence superlinearly convergent.

How many iterations do we need?

xk x *

∥x k− x*∥ ≤ C∥xk−1−x*∥s

ak0

∣ak∣ ≤ C∣ak−1∣
s

C∣ak−1∣
s−1

91 Wolfgang Bangerth

Example: The sequence of numbers

a
k
 = 1, 0.9, 0.81, 0.729, 0.6561, ...

is linearly convergent because

with s=1, C=0.9.

Remark 1: Linearly convergent sequences can converge very
slowly if C is close to 1.

Remark 2: Linear convergence is considered slow. We will want
to avoid linearly convergent algorithms.

How many iterations do we need?

∣ak∣ ≤ C∣ak−1∣
s

92 Wolfgang Bangerth

Example: The sequence of numbers

a
k
 = 0.1, 0.03, 0.0027, 0.00002187, ...

is quadratically convergent because

with s=2, C=3.

Remark 1: Quadratically convergent sequences can converge
very slowly if C is large. For many algorithms we can show that
they converge quadratically if a

0
 is small enough since then

If a
0
 is too large then the sequence may fail to converge since

Remark 2: Quadratic convergence is considered fast. We will
want to use quadratically convergent algorithms.

How many iterations do we need?

∣ak∣ ≤ C∣ak−1∣
s

∣a1∣ ≤ C∣a0∣
2 ≤ ∣a0∣

∣a1∣ ≤ C∣a0∣
2 ≥ ∣a0∣

93 Wolfgang Bangerth

Example: Compare linear and quadratic convergence

How many iterations do we need?

∥x k− x *∥

k

Linear convergence.

Gain factor C<1
is constant.

Quadratic convergence.

Gain factor
becomes better and better!

C∣ak−1∣1

94 Wolfgang Bangerth

Summary:

● Quadratic algorithms converge faster in the limit than
linear or superlinear algorithms

● Algorithms that are better than linear will need to be
started close enough to the solution

Algorithms are best compared by counting the number of
● function,
● gradient, or
● Hessian evaluations

to achieve a certain accuracy. This is generally a good
measure for the run-time of such algorithms.

Metrics of algorithmic complexity

95 Wolfgang Bangerth

Part 4

Smooth unconstrained
problems:

Line search algorithms

minimize f x 

96 Wolfgang Bangerth

Smooth problems: Characterization of Optima

Problem: find solution of

A strict local minimum must satisfy two conditions:

First order necessary condition: gradient must vanish:

Sufficient condition for a strict minimum:

x *

minimize x f  x 

x *

∇ f  x*=0

spectrum ∇2 f x *  0

97 Wolfgang Bangerth

Basic Algorithm for Smooth Unconstrained Problems

Basic idea for iterative solution of the problem

Generate a sequence by

 1. finding a search direction
 2. choosing a step length

Then compute the update

Iterate until we are satisfied.

minimize f x 

x k1=x kk pk

k

pk

x k

x k

x k1

pk

x k x *

98 Wolfgang Bangerth

Step 1: Choose search direction

Conditions for a useful search direction:

pk⋅∇ f xk ≤0

Minimization function should
be decreased in this
direction:

Search direction should lead
to the minimum as straight
as possible

∇ f  xk 

−∇ f x k 

99 Wolfgang Bangerth

Step 1: Choose search direction

Basic assumption: We can usually only expect to know the
minimization function locally at .
That means that we can only evaluate

∇ f  xk =gkf xk 

x k

∇2 f  xk =H k ...

For a search direction, try to model in the vicinity of
by a Taylor series:

f xk 

f x k

f x k pk  ≈ f x k 

  gk
T pk

 
1
2

pk
T H k pk  

100 Wolfgang Bangerth

Step 1: Choose search direction

Goal: Approximate in the vicinity of by a model

with ∇ f  xk =gkf xk =f k

x k

∇2 f  xk =H k ...

Then: Choose that direction that minimizes the model

f ⋅

pk

f xkp ≈ mk p  = f k  gk
T p 

1
2

pT H k p  

mk  p

101 Wolfgang Bangerth

f xkp ≈ f k  gk
T p = mk  p

pk =− gk

pk=−∇ f xk 

Method 1 (Gradient method, Method of Steepest Descent):

search direction is minimizing direction of linear model

Step 1: Choose search direction

102 Wolfgang Bangerth

mk p  = f k  gk
T p 

1
2

pT H k p

∂mk p

∂ p
 = gkH k p=0  pk = −H k

−1 gk

Method 2 (Newton's method):

search direction is to the minimum of the quadratic model

Minimum is characterized by

Step 1: Choose search direction

103 Wolfgang Bangerth

Method 2 (Newton's method) -- alternative viewpoint:

Newton step is also generated when applying Newton's method

for the root-finding problem (F(x)=0) to the necessary optimality

condition:

Linearize necessary condition around x
k
:

0 = ∇ f x * = ∇ f  xk   ∇
2 f x k  x *−x k   ...

 gk H k pk

pk = −H k
−1 gk

Step 1: Choose search direction

104 Wolfgang Bangerth

Step 1: Choose search direction

mk p = f k  gk
T p 

1
2

pT H k p
1
6 [∂3 f
∂ x l∂ xm∂ xn

]k p l pm pn

∂mk p

∂ p
 = gkH k p

1
2 [∂3 f
∂ x l∂ xm∂ xn

]k p l pm=0  pk = ? ??

Method 3 (A third order method):

The search direction is to the minimum of the cubic model

Minimum is characterized by the quadratic equation

There doesn't appear to be any practical way to compute the

solution of this equation for problems with more than one

variable.

105 Wolfgang Bangerth

Step 2: Determination of Step Length

k = arg min


 f xk pk 

Once the search direction is known, compute the update by
choosing a step length and setk

x k1 = xkk pk

Determine the step length by solving the
1-d minimization problem (line search):

For Newton's method: If the quadratic
model is good, then step is good, then
take full step with k=1

106 Wolfgang Bangerth

Convergence: Gradient method

∥x k− x *∥ ≤ C∥x k−1−x *∥

Gradient method converges linearly, i.e.

Gain is a fixed factor C<1
Convergence can be very slow if C close to 1.

Example: If f(x)=xTHx, with H positive definite and for
optimal line search, then

C≈
n−1

n1

 {i}=spectrum H

x 2 y2  C=0 x 25y2  C≈0.6

107 Wolfgang Bangerth

Convergence: Newton's method

Newton's method converges quadratically, i.e.

Optimal convergence order only if step length is 1, otherwise
slower convergence (step length is 1 if quadratic model
valid!)

If quadratic convergence: accelerating progress as iterations
proceed.

Size of C:

C measures size of nonlinearity beyond quadratic part.

C ∼ supx , y

∥∇2 f (x*)−1 (∇ 2 f (x)−∇ 2 f (y))∥
∥x− y∥

∥x k− x *∥ ≤ C∥x k−1−x *∥2

108 Wolfgang Bangerth

Example 1: Gradient method

f x , y =−x32x2 y2

Local minimum at x=y=0,
saddle point at x=4/3, y=0

109 Wolfgang Bangerth

Example 1: Gradient method

Convergence of gradient method:
Converges quite fast, with linear rate
Mean value of convergence constant C : 0.28
At (x=0,y=0), there holds

∇
2 f 0,0~{1=4,2=2} C≈

4−2
42

≈0.33

∥x k− x *∥

110 Wolfgang Bangerth

Example 1: Newton's method

f x , y =−x32x2 y2

Local minimum at x=y=0,
saddle point at x=4/3, y=0

111 Wolfgang Bangerth

Example 1: Newton's method

Convergence of Newton's method:
Converges very fast, with quadratic rate
Mean value of convergence constant C : 0.15

Theoretical estimate yields C=0.5

∥x k− x *∥ ≤ C∥x k−1− x*∥2

∥x k− x *∥

112 Wolfgang Bangerth

Example 1: Comparison between methods

Newton's method much faster than gradient method

Newton's method superior for high accuracy due to higher
order of convergence

Gradient method simple but converges in a reasonable
number of iterations as well

∥x k− x *∥

k

113 Wolfgang Bangerth

Example 2: Gradient method

(Banana valley function)

Global minimum at x=y=0

f x , y =
4x− y2


2


1
100  1

100
y2

114 Wolfgang Bangerth

Example 2: Gradient method

Convergence of gradient method:
Needs almost 35,000 iterations to come closer than 0.1 to
the solution!
Mean value of convergence constant C : 0.99995
At (x=4,y=2), there holds

∇
2 f 4,2~{1=0.1,2=268} C≈

268−0.1
2680.01

≈0.9993

∥x k− x *∥

115 Wolfgang Bangerth

Example 2: Newton's method

(Banana valley function)

Global minimum at x=y=0

f x , y =
4x− y2


2


1
100  1

100
y2

116 Wolfgang Bangerth

Example 2: Newton's method

Convergence of Newton's method:
Less than 25 iterations for an accuracy of better than 10-7!

Convergence roughly linear for first 15-20 iterations since
step length

Convergence roughly quadratic for last iterations with step
length

k≠1

∥x k− x *∥

k≈1

117 Wolfgang Bangerth

Example 2: Comparison between methods

Newton's method much faster than gradient method

Newton's method superior for high accuracy (i.e. in the
vicinity of the solution) due to higher order of convergence

Gradient method converges too slowly for practical use

∥x k− x *∥

118 Wolfgang Bangerth

Practical line search strategies

Ideally: Use an exact step length determination (line search)
based on

This is a 1d minimization problem for α, solvable via Newton's
method/bisection search/etc.

However: Expensive, may require many function/gradient
evaluations.

Instead: Find practical criteria that guarantee convergence but
need less function evaluations!

k = arg min


 f xk pk 

119 Wolfgang Bangerth

Practical line search strategies

Strategy: Find practical criteria that guarantee convergence
but need less evaluations.

Rationale:

● Near the optimum, quadratic approximation of f is valid
→ take full steps (step length 1) there

● Line search only necessary far away from the solution

● If close to solution, need to try α=1 first

Consequence:

● Near solution, quadratic convergence of Newton's method
is retained

● Far away, convergence is slower in any case.

120 Wolfgang Bangerth

Practical line search strategies

Practical strategy: Use an inexact line search that:
● finds a reasonable approximation to the exact step length
● chosen step length guarantees a sufficient decrease in f(x);
● chooses full step length 1 for Newton's method whenever

possible.

f x , y =x 4− x2 y4− y2

121 Wolfgang Bangerth

Practical line search strategies

Wolfe condition 1 (“sufficient decrease” condition):
Require step lengths to produce a sufficient decrease

f xk pk  ≤ f xk   c1 [∂ f x k pk 

∂ ]
=0

 = f k  c1∇ f k⋅pk

Necessary:

Typical values:

i.e.: only very small
decrease mandated

0c11

c1=10−4



f xk pk 

122 Wolfgang Bangerth

Practical line search strategies

∇ f xk pk ⋅pk = [∂ f xk pk 

∂]
= k

 ≥ c2[∂ f xk pk 

∂]
=0

 = c2∇ f k⋅pk

Necessary:

Typical:

Rationale: Exclude too
small step lengths

0c1c21

c2=0.9



f xk pk 

Wolfe condition 2 (“curvature” condition):
Require step lengths where f has shown sufficient
curvature upwards

123 Wolfgang Bangerth

Practical line search strategies

Wolfe conditions

Conditions 1 and 2 usually yield reasonable ranges for the
step lengths, but do not guarantee optimal ones



f xk pk 

124 Wolfgang Bangerth

Practical line search strategies - Alternatives



f xk pk 


f xk pk 



f xk pk 

Strict Wolfe conditions:

∣[∂ f xk pk

∂]
=k

∣ ≤ c2∣[∂ f xk pk 

∂]
=0
∣

Goldstein conditions:

f xk pk  ≥ f xk   1−c1 [∂ f xk pk 

∂ ]
=0

125 Wolfgang Bangerth

Practical line search strategies

Conditions like the ones above tell us whether a given step
length is acceptable or not.

In practice, don't try too many step lengths – checking the
conditions involves function evaluations of f(x).

Typical strategy (“Backtracking line search”):
1. Start with a trial step length
 (for Newton's method:)
2. Verify acceptance conditions for this
3. If yes:
4. If no: and go to 2.

Note: A typical reduction factor is

t=

=1
t

k=t

t=c t , c1

c=
1
2

126 Wolfgang Bangerth

Practical line search strategies

An alternative strategy (“Interpolating line search”):

● Start with , set

● Verify acceptance conditions for

● If yes:

● If no:
- let

- from evaluating the sufficient decrease condition

 we already know ,
 and

- if then choose as minimizer of the quadratic
 function that interpolates

- if then choose as the minimizer of the cubic
 function that interpolates

αt
(0)
=ᾱ=1

t
i 

k=t
i

k = f x k pk 

k 0= f x k  k ' 0=∇ f k⋅pk=g k⋅pk

f xkt
i  pk ≤ f k  c1t

 i
∇ f k⋅pk

k t
i= f  xkt

i pk 

i=0

i=0 t
i1

k 0 , ' k 0 ,k t
i

i0 t
i1

k 0 , ' k 0 ,k t
i ,k t

i−1

127 Wolfgang Bangerth

Practical line search strategies

An alternative strategy (“Interpolating line search”):

Step 1: Quadratic interpolation

αt
(0)

128 Wolfgang Bangerth

Practical line search strategies

An alternative strategy (“Interpolating line search”):

Step 2 and following: Cubic interpolation

αt
(0)

αt
(1)

129 Wolfgang Bangerth

Part 5

Smooth unconstrained
problems:

Trust region algorithms

minimize f x 

130 Wolfgang Bangerth

Line search vs. trust region algorithms

Line search algorithms:
Choose a relatively simple strategy to find a search direction
Put significant effort into finding an appropriate step length

131 Wolfgang Bangerth

Line search vs. trust region algorithms

Trust region algorithms:
Choose simple strategy to determine a step length.
Put effort into finding an appropriate search direction.

Background:
In line search methods, we choose a direction based on a local
approximation of the objective function
I.e.: Try to predict f(x) far away from x

k
 by looking at f

k
 , g

k
 , H

k

This can't work when still far
from the solution!
(Unless f(x) is almost
quadratic everywhere.)

132 Wolfgang Bangerth

Trust region algorithms

Trust region algorithms:
Choose simple strategy to determine a step length.
Put effort into finding an appropriate search direction.

Alternative strategy:
Keep a number Δ

k
 that indicates up to which distance we trust

that our model m
k
(p) is a good approximation of f(x

k
+p

k
).

Find an update as follows:

Then accept the update unconditionally, i.e. without line search:

pk = arg min p mk  p= f kg k⋅p
1
2

pT B p

 such that ∥p∥ ≤  k

xk1 = xk pk

133 Wolfgang Bangerth

Trust region algorithms

Example:

Line search Newton direction leads to the exact minimum of
approximating model m

k
(p).

However, m
k
(p) does not approximate f(x) well at these

distances.

Consequently, we need line search as a safe guard.

f x mk  p

xk

pk

134 Wolfgang Bangerth

Trust region algorithms

Example:

Rather, decide how far we trust the model and stay within this
radius!

f x mk  p

xk

135 Wolfgang Bangerth

Trust region algorithms

Basic trust region algorithm:
For k=1,2,...:
● Compute update by finding approximation to the solution of

● Compute predicted improvement
● Compute actual improvement

● If then
 and then

● If for some then
 else

PI = mk 0−mk  pk 

pk = arg min p mk  p= f kg k⋅p1
2

pT B k p

 such that ∥p∥ ≤  k

AI = f  xk − f  xk pk 

AI /PI  1/4

AI /PI  3 /4

 k1 = 1
4
∥ pk∥

 k1 = 2k
∥pk∥=k

AI /PI   ∈[0,1/ 4) x k1 = xk pk

xk1 = xk

pk

136 Wolfgang Bangerth

Trust region algorithms

Fundamental difficulty of trust region algorithms:

● Not a trivial problem to solve!
● As with line search algorithms, don't spend too much time

finding the exact minimum of an approximate model.

● Practical trust region methods are about finding cheap ways
to approximate the solution of the problem above!

pk = arg min p mk  p= f kg k⋅p1
2

pT B k p

 such that ∥p∥ ≤  k

137 Wolfgang Bangerth

Trust region algorithms: The dogleg method

Find an approximation to the solution of:

Note:

If trust region radius is small, then we get the “Cauchy point” in
the steepest descent direction:

 is the minimizer of f(x) in direction

If trust region radius is large, then we get the (quasi-)Newton
update:

pk = arg min p mk  p= f kg k⋅p1
2

pT B k p

 such that ∥p∥ ≤  k

pk ≈ pk
C =  pk

SD

pk = pk
B = −B k

−1 g k

pk
SD = − k

g k

∥g k∥
∈[0,1]

pk
SDpk

C

138 Wolfgang Bangerth

Trust region algorithms: The dogleg method

Find an approximation to the solution of:

pk = arg min p mk  p= f kg k⋅p1
2

pT B k p

 such that ∥p∥ ≤  k

 k∥pk
B∥

pk
B

pk
C

x k

pk
C

x k pk
B

 k∥pk
B∥

139 Wolfgang Bangerth

Trust region algorithms: The dogleg method

Find an approximation to the solution of:

Idea:

Find the approximate solution along the “dogleg” line

pk = arg min p mk  p= f kg k⋅p1
2

pT B k p

 such that ∥p∥ ≤  k

pk
B x k pk

B

pk
C

pk
C

pk

x k  x k p k
C  xk pk

B

x k

140 Wolfgang Bangerth

Trust region algorithms: The dogleg method

Find an approximation to the solution of:

In practice, the Cauchy point is difficult to compute because it
requires a line search.

Thus, dogleg method doesn't use the minimizer of f along
but the minimizer

of

The dogleg then runs along

pk = arg min p mk  p= f kg k⋅p1
2

pT B k p

 such that ∥p∥ ≤  k

pk
C pk

SD

pk
U
=−

g k
T g k

g k
T Bk g k

g k

mk  p= f kg k
T p 1

2
pT Bk p

x k  x k p k
U  x k pk

B

141 Wolfgang Bangerth

Trust region algorithms: The dogleg method

Find an approximation to the solution of:

Dogleg algorithm:

If satisfies then set

Otherwise, if satisfies then set

Otherwise choose as the intersection point of the line
and the circle with radius

pk = arg min p mk  p= f kg k⋅p1
2

pT B k p

 such that ∥p∥ ≤  k

pk
B=−Bk

−1 g k pk= pk
B

pk
U
=−

g k
T g k

g k
T Bk g k

g k

∥p k
B∥ k

∥p k
U∥ k pk=

pk
U

∥pk
U∥
 k

pk pk
U pk

B

 k

142 Wolfgang Bangerth

Part 6

Practical aspects of
Newton methods

minimize f x 

143 Wolfgang Bangerth

What if the Hessian is not positive definite

At the solution, Hessian is positive definite. If f(x) is
smooth, Hessian is positive definite near the optimum.

However, this needs not be so far away from the optimum:

∇2 f  x*

At initial point
the Hessian is indefinite:

H 0=∇
2 f x0=−0.022 0.134

0.134 −0.337
1=−0.386, 2=0.027

Quadratic model

has saddle point instead of
minimum, Newton step is
invalid!

mk  p= f kgk
T p

1
2

pT H k p

x0

144 Wolfgang Bangerth

What if the Hessian is not positive definite

Background: Search direction only useful if it is a descent
direction:

Trivially satisfied for Gradient method, for Newton's method
there holds:

∇ f  xk 
T⋅pk0

pk=−H k
−1 g k  gk

T⋅pk=−gk
T H k

−1 gk  0

Search direction only a
guaranteed descent direction,
if H positive definite!

Otherwise search direction is
direction to saddle point of
quadratic model and might be
a direction of ascent!

145 Wolfgang Bangerth

What if the Hessian is not positive definite

If Hessian is not positive definite, then modify the quadratic
model:

● retain as much information as possible;
● model should be convex, so that we can seek a minimum.

The general strategy then is to replace the quadratic model by
a positive definite one:

Here, is a suitable modification of exact Hessian
so that is positive definite.

Note: To retain ultimate quadratic convergence, we need that

mk  p = f kgk
T p

1
2

pT H k p

H k H k=∇
2 f  xk

H k

H k H k as xk x *

146 Wolfgang Bangerth

What if the Hessian is not positive definite

The Levenberg-Marquardt modification:

Choose

so that the minimum of

lies at

mk  p = f kgk
T p

1
2

pT Hk p

H k = H k I −i

Note: Search direction is mixture
between Newton direction and gradient.

Note: Close to the solution the Hessian
must become positive definite and we
can choose

pk
N

pk
G

pk=− H k
−1 gk = −H k I −1 gk

=0

147 Wolfgang Bangerth

What if the Hessian is not positive definite

The eigenvalue modification strategy:

Since H is symmetric, it has a complete set of eigenvectors:

Therefore replace the quadratic model by a positive definite
one:

with

Note: Only modify the Hessian in directions of negative
curvature.

Note: Close to the solution, all eigenvalues become positive
and we get again the original Newton matrix.

H k = ∇2 f  xk  = ∑i
i v i v i

T

Hk = ∑i
max { i , } v i v i

T

mk  p = f kgk
T p

1
2

pT H k p

148 Wolfgang Bangerth

What if the Hessian is not positive definite

One problem with the modification

is that the search direction is given by

that is search direction has large component (of size 1/ε) in
direction of modified curvatures!

An alternative that avoids this is to use

H k = ∑i
max { i , } v i v i

T

pk = −H̃ k
−1 gk = −∑i

1
max {λi ,ϵ}

 v i (v i
T gk)

H k = ∑i
∣i∣vi v i

T

149 Wolfgang Bangerth

What if the Hessian is not positive definite

Theorem: Using full step length and either of the Hessian
modifications

we have that if and if then convergence
happens with quadratic rate.

Proof: Since f is twice continuously differentiable, there is a k
such that x

k
 is close enough to x* that H

k
 is positive definite.

When that is the case, then

for all following iterations, providing the quadratic convergence
rate of the full step Newton method.

H k = ∑i
max { i , } v i v i

T

xk x *

H k = H k

H k = H k I −i

f ∈C2,1

150 Wolfgang Bangerth

What if the Hessian is not positive definite

Example:

Blue regions indicate that
Hessian

is not positive definite.

f (x , y) = x4−x2+ y4− y2

∇
2 f (x , y) = (12x2

−2 0
0 12y2−2)

minima at x=
±√2

2,
y=
±√(2)

2

151 Wolfgang Bangerth

What if the Hessian is not positive definite

Starting point:

1.Negative gradient

2.Unmodified Hessian search
direction

3.Search direction with eigenvalue
modified Hessian (=10-6)

4.Search direction with shifted
Hessian (=2.5; search direction
only good by lucky choice of )

x0=0.1 y0=0.87

H 0 = −1.88 0
0 7.08 

(1)(2)

(3)

(4)

152 Wolfgang Bangerth

Truncated Newton methods

In any Newton or Trust Region method, we have to solve an
equation of the sort

or potentially with a modified Hessian:

Oftentimes, computing the Hessian is more expensive than
inverting it, but not always.

Question: Could we possibly get away with only approximately
solving this problem, i.e. finding

with suitable conditions on how accurate the approximation is?

H k pk = −gk

H k pk = −gk

pk ≈ −H k
−1 gk

153 Wolfgang Bangerth

Truncated Newton methods

Example: Since the Hessian (or a modified version) is a
positive definite matrix, we may want to solve

using an iterative method such as the Conjugate Gradient
method, Gauss-Seidel, Richardson iteration, SSOR, etc etc.

While all these methods eventually converge to the exact
Newton direction, we may want to truncate this iteration at one
point.

Question: When can we terminate this iteration?

H k pk = −gk

154 Wolfgang Bangerth

Truncated Newton methods

Theorem 1: Let be an approximation to the Newton
direction defined by

and let there be a sequence of numbers so that

Then if then the full step Newton method converges
with linear order.

H k pk = −gk

∥gkH k pk∥

∥gk∥
≤k1

pk

{ k},k1

xk x *

155 Wolfgang Bangerth

Truncated Newton methods

Theorem 2: Let be an approximation to the Newton
direction defined by

and let there be a sequence of numbers
so that

Then if then the full step Newton method converges
with superlinear order.

H k pk = −gk

∥gkH k pk∥

∥gk∥
≤k1

p̂k

{ k},k1, k0

xk→ x*

156 Wolfgang Bangerth

Truncated Newton methods

Theorem 3: Let be an approximation to the Newton
direction defined by

and let there be a sequence of numbers
so that

Then if then the full step Newton method converges
with quadratic order.

H k pk = −gk

∥gkH k pk∥

∥gk∥
≤k1

{ k},k1, k=O ∥gk∥

pk

xk x *

157 Wolfgang Bangerth

Part 7

Quasi-Newton update formulas

Bk1=Bk...

158 Wolfgang Bangerth

Quasi-Newton update formulas

Observation 1:

Computing the exact Hessian to determine the Newton search
direction

is expensive, and sometimes impossible.

It at least doubles the effort per iteration because we need not
only the first but also the second derivative of f(x).

It also requires us to solve a linear system for the search
direction.

H k pk = −gk

159 Wolfgang Bangerth

Quasi-Newton update formulas

Observation 2:

We know that we can get superlinear convergence if we
choose the update using

instead of

under certain conditions on the matrix B
k
.

Bk pk = −gk

pk

H k pk = −gk

160 Wolfgang Bangerth

Quasi-Newton update formulas

Question:

● Maybe it is possible to find matrices B
k

for which:

● Computing B
k
 is cheap and requires no additional

function evaluations

● Solving

for p
k
 is cheap

● The resulting iteration still converges with superlinear
order.

Bk pk = −gk

161 Wolfgang Bangerth

Motivation of ideas

Consider a function p(x).

The Fundamental Theorem of Calculus tells us that

for some

Let's apply this to :

Let us denote then this reads

with an “average” Hessian .

p  z − px =∇ p T  z−x 

=xt  z−x , t∈[0,1]

px =∇ f x , z=xk , x=xk−1

∇ f xk −∇ f xk−1=gk−gk−1=∇
2 f x k−t  pkxk− xk−1

 = H xk−xk−1

yk−1=g k−g k−1 , sk−1= xk− xk−1

H sk−1= yk−1

H

162 Wolfgang Bangerth

Motivation of ideas

Requirements:

● We seek a matrix B
k+1

 so that

● The “secant condition” holds:

● B
k+1

 is symmetric

● B
k+1

 is positive definite

● B
k+1

 changes minimally from B
k

● The update equation is easy to solve for

Bk1 sk= yk

pk1 = −B k1
−1 g k1

163 Wolfgang Bangerth

Davidon-Fletcher-Powell

The DFP update formula:

Given B
k
 define B

k+1
 by

This satisfies the conditions:

● It is symmetric and positive definite

● It is among all possible matrices the one that minimizes

● It satisfies the secant condition

Bk +1=(I−γ yk sk
T
)B k (I−γ sk yk

T
)+γ yk yk

T

 γk=
1

yk
T sk

∥ H−1/2Bk1−Bk  H
−1/2∥F

Bk1 sk= yk

164 Wolfgang Bangerth

Broyden-Fletcher-Goldfarb-Shanno

The BFGS update formula:

Given B
k
 define B

k+1
 by

This satisfies the conditions:

● It is symmetric and positive definite

● It is among all possible matrices the one that minimizes

● It satisfies the secant condition

Bk1=Bk−
Bk sk sK

T Bk

sk
T Bk sK


y k y k

T

yk
T sk

∥ H 1/2Bk1
−1 −Bk

−1 H 1/2∥F

Bk1 sk= yk

Bk1=Bk−
Bk sk sK

T Bk

sk
T Bk sK


y k y k

T

yk
T sk

165 Wolfgang Bangerth

Broyden-Fletcher-Goldfarb-Shanno

So far:

● We seek a matrix B
k+1

 so that

● The secant condition holds:

● B
k+1

 is symmetric

● B
k+1

 is positive definite

● B
k+1

 changes minimally from B
k
 in some sense

● The update equation is easy to solve for

Bk1 sk= yk

pk = −Bk
−1 gk

166 Wolfgang Bangerth

DFP and BFGS

Now a miracle happens:

For the DFP formula:

For the BFGS formula:

This makes computing the next update very cheap!

Bk1= I−k y k sk
T  Bk  I−k sk yk

T k yk yk
T , k=

1

yk
T sk

Bk1
−1
=Bk

−1
−

Bk
−1 yk yk

T Bk
−1

yk
T Bk

−1 yk


sk sk

T

y k
T sk

Bk1=Bk−
Bk sk s K

T Bk

sk
T Bk sk


y k y k

T

yk
T sk

Bk1
−1
= I−k sk yk

T
 Bk
−1
 I−k yk sk

T
k sk sk

T
, k=

1

y k
T sk

167 Wolfgang Bangerth

DFP + BFGS = Broyden class

What if we mixed:

This is called the “Broyden class” of update formulas.

The class of Broyden methods with is called the
“restricted Broyden class”.

B k1
DFP
= I−k yk sk

T
Bk  I−k sk y k

T
 k yk yk

T , k=
1

yk
T sk

Bk1
BFGS=Bk−

Bk sk s K
T Bk

sk
T Bk sk


yk yk

T

yk
T sk

Bk1=k Bk1
DFP1−k Bk

BFGS

0≤k≤1

168 Wolfgang Bangerth

DFP + BFGS = Broyden class

Theorem: Let , let be a starting point so that the set

is convex. Let be any symmetric positive definite matrix.
Then

for any sequence generated by a quasi-Newton method
that uses a Hessian update formula by any member of the
restricted Broyden class with the exception of the DFP method
 .

f ∈C2 x0

={x : f x≤f x0}

B0

xk x *

xk

k=1

169 Wolfgang Bangerth

DFP + BFGS = Broyden class

Theorem: Let . Assume the BFGS updates converge,
then

with superlinear order.

f ∈C2,1

xk x *

170 Wolfgang Bangerth

Practical BFGS: Starting matrix

Question: How do we choose the initial matrix ?

Observation 1: The theorem stated that we will eventually
converge for any symmetric, positive definite starting matrix.

In particular, we could choose a multiple of the identity matrix

Observation 2: If is too small, then

is too large, and we need many trials in line search to find a
suitable step length.

Observation 3: The matrices B should approximate the
Hessian matrix, so they at least need to have the same
physical units.

B0 or B0
−1

B0= I , B0
−1=

1


I



p0=−B0
−1 g0=−

1


g0

171 Wolfgang Bangerth

Practical BFGS: Starting matrix

Practical approaches:

Strategy 1: Compute the first gradient g
0
, choose a “typical”

step length , then set

so that we get

Strategy 2: Approximate the true Hessian somehow. For
example, do one step with the heuristic above, choose

and start over again.



B0=
∥g0∥


I , B0

−1=

∥g0∥

I

p0=−B0
−1 g0=−

g0

∥g0∥

B0=
y1

T y1

y1
T s1

I , B0
−1=

y1
T s1

y1
T y1

I

172 Wolfgang Bangerth

Practical BFGS: Limited Memory BFGS (LM-BFGS)

Observation: The matrices

are full, even if the true Hessian is sparse.

Consequence:

We need to compute all n2 entries, and store them.

Bk1=Bk−
Bk sk s K

T Bk

sk
T Bk sk


y k y k

T

yk
T sk

Bk1
−1
= I−k sk yk

T
 Bk
−1
 I−k yk sk

T
k sk sk

T
, k=

1

y k
T sk

173 Wolfgang Bangerth

Practical BFGS: Limited Memory BFGS (LM-BFGS)

Solution: Note that in the kth iteration, we can write

We can expand this recursively:

Consequence: We need only store kn entries.

Bk
−1=V k−1

T Bk−1
−1 V k−1k−1 sk−1 sk−1

T

 with k−1=
1

yk−1
T sk−1

,V k−1= I−k−1 y k−1 sk−1
T 

Bk
−1=V k−1

T Bk−1
−1 V k−1k−1 sk−1 sk−1

T

 =V k−1
T V k−2

T Bk−2
−1 V k−2V k−1

 k−2 V k−1
T sk−1 sk−2

T V k−1k−1 sk−1 sk−1
T

 =...
 =[V k−1

T ⋅⋅⋅V 1
T]B0

−1 [V 1⋅⋅⋅V k−1]

 ∑ j=1

k
k− j{[V k−1

T
⋅⋅⋅V k− j1

T] sk− j sk− j
T

[V k− j1⋅⋅⋅V k−1]}

174 Wolfgang Bangerth

Practical BFGS: Limited Memory BFGS (LM-BFGS)

Problem: kn elements may still be quite a lot if we need many
iterations. Forming the product with this matrix will then also be
expensive.

Solution: Limit memory and CPU time by only storing the last
m updates:

Consequence: We need only store mn entries and
multiplication with this matrix requires 2mn+O(m3) operations.

Bk
−1=[V k−1

T ⋅⋅⋅V k−m
T]B0,k

−1 [V k−m⋅⋅⋅V k−1]

 ∑ j=1

m
k− j{[V k−1

T ⋅⋅⋅V k− j1
T] sk− j sk− j

T [V k− j1⋅⋅⋅V k−1]}

175 Wolfgang Bangerth

Practical BFGS: Limited Memory BFGS (LM-BFGS)

In practice:

● Initial matrix can be chosen independently in each
iteration; typical approach is again

● Typical values for m are between 3 and 30.

Bk
−1=[V k−1

T ⋅⋅⋅V k−m
T]B0,k

−1 [V k−m⋅⋅⋅V k−1]

 ∑ j=1

m
k− j{[V k−1

T ⋅⋅⋅V k− j1
T] sk− j sk− j

T [V k− j1⋅⋅⋅V k−1]}

B0,k
−1=

y k−1
T sk−1

yk−1
T yk−1

I

176 Wolfgang Bangerth

Parts 1-7

Summary of methods for
smooth unconstrained

problems

minimize f x 

177 Wolfgang Bangerth

Summary

● Newton's method is unbeatable with regard to speed of
convergence

● However: To converge, one needs
- a line search method + conditions like the Wolfe conditions
- Hessian matrix modification if it is not positive definite

● Newton's method can be expensive or infeasible if
- computing Hessians is complicated
- the number of variables is large

● Quasi-Newton methods, e.g. LM-BFGS, help:
- only need first derivatives
- need little memory and no explicit matrix inversions
- but converge slower (at best superlinear)

● Trust region methods are an alternative to Newton's method
but share the same drawbacks

178 Wolfgang Bangerth

Part 8

Equality-constrained
Problems

minimize f x
 g i x  = 0, i=1,... , ne

179 Wolfgang Bangerth

An example

Consider the example of the body suspended from a ceiling
with springs, but this time with an additional rod of fixed
length attached to a fixed point:

To find the position of the body we now need to solve the
following problem:

minimize f x =E x , z =∑i
E spring , ix , z Epot x , z 

 ∥x−x0∥−Lrod = 0

180 Wolfgang Bangerth

An example

We can gain some insight into the problem by plotting the
energy as a function of (x,z) along with the constraint:

181 Wolfgang Bangerth

Definitions

We call this the standard form of equality constrained
problems:

We will also frequently write this as follows, implying equality
elementwise:

minimizex∈D⊂Rn f x 

 g ix = 0, i=1 ...ne

minimizex∈D⊂Rn f x 

 g x = 0

182 Wolfgang Bangerth

Definitions

A trivial reformulation of the problem is obtained by defining the
feasible set:

Then the original problem is equivalently recast as

Note 1: Reformulation is not of much practical interest.

Note 2: Feasible set can be continuous or discrete, or empty if
constraints are mutually incompatible.

We will always assume that it is continuous and non-empty.

={x∈Rn : g x=0}

minimizex∈D∩⊂Rn f x

183 Wolfgang Bangerth

The quadratic penalty method

Observation: The solution of

must lie within the feasible set where g(x)=0.

Idea: Let's relax the constraint and also search close to
where g(x) is small but not zero. However, make sure that
the objective function becomes very large if far away from
the feasible set:

Q
μ
(x) is called the quadratic relaxation of the constrained

minimization problem. μ is the penalty parameter.

minimize x∈D⊂Rn Q

 x= f  x

1
2
∥g x ∥2

minimizex∈D⊂Rn f x 

 g x = 0

184 Wolfgang Bangerth

The quadratic penalty method

Why is Q
μ
(x) called relaxation of the constrained

minimization problem with f(x), g(x)?

Consider the original problem

with relaxation

Replacing fixed rod by spring with constant would yield
an unconstrained problem with objective function

Q x =E x , z 
1

2
∥x−x0∥−Lrod 

2

minimize f x =E x , z =∑i
E spring , ix , z Epot x , z 

 ∥x−x0∥−Lrod = 0

f x =E x , z 
1
2
D ∥x− x0∥−L rod 

2

D

185 Wolfgang Bangerth

The quadratic penalty method

Example: Q
μ
(x) with μ=infinity

186 Wolfgang Bangerth

The quadratic penalty method

Example: Q
μ
(x) with μ=0.01

187 Wolfgang Bangerth

The quadratic penalty method

Example: Q
μ
(x) with μ=0.001

188 Wolfgang Bangerth

The quadratic penalty method

Example: Q
μ
(x) with μ=0.00001

189 Wolfgang Bangerth

The quadratic penalty method

Algorithm:
Given
For t=0,1, 2, ...:

Find approximation to the (unconstrained) mimizer
of that satisfies

using as starting point.

Set t=t+1,

Typical values:

x t
*

∥∇Q t
 x t

*
∥≤t

xt
*

Q
 t
 x

x0
start , {μt }→0, {t }→ 0

xt
start

xt
start
=xt−1

*

μt=cμt−1 , c=0.1 to 0.5
t=c t−1

190 Wolfgang Bangerth

The quadratic penalty method

Positive properties of the quadratic penalty method:

● Algorithms for unconstrained problems readily available;

● Q at least as smooth as f, g
i
 for equality constrained

problems;

● Usually only few steps are needed for each penalty
parameter, since good starting point known;

● It is not really necessary to solve each unconstrained
minimization to high accuracy.

Negative properties of the quadratic penalty method:

● Minimizers for finite penalty parameters are usually
infeasible;

● Problem is becoming more and more ill-conditioned near
optimum as penalty parameter is decreased, Hessian large.

191 Wolfgang Bangerth

The quadratic penalty method

Theorem (Convergence): Let be exact minimizer of
and let . Let f,g be once differentiable.

Then every limit point of the sequence is a
solution of the constrained minimization problem

x t
* Q t

 x
 t0

{xt
*
}t=1,2,...

minimizex∈D⊂Rn f x 

 g x = 0

192 Wolfgang Bangerth

The quadratic penalty method

Theorem (Convergence): Let be approximate
minimizers of with

for a sequence and let . Let

Then every limit point of the sequence satisfies
certain first-order necessary conditions for solutions of the
constrained minimization problem

x t
*

Q t
 x

 t0

{xt
*
}t=1,2,...

minimizex∈D⊂Rn f x 

 g x = 0

 t0

∥∇ Q t
 x t

*
∥≤ t

f ∈C2, g∈C1.

193 Wolfgang Bangerth

Lagrange multipliers

Consider a (single) constraint g(x) as a function of x:

 g(x,z)=-0.1 g(x,z)=0 g(x,z)=0.1

gx =∥x− x0∥−Lrod

194 Wolfgang Bangerth

Lagrange multipliers

Now look at the objective function f(x):

f x =∑i=1

3 1
2

D ∥x−x i∥−L0 
2

195 Wolfgang Bangerth

Lagrange multipliers

Now both f(x), g(x):

 g(x,z)=0

196 Wolfgang Bangerth

Lagrange multipliers

Now both f(x), g(x):

Conclusion:
● Solution is where isocontours are tangential to each other
● That is, where gradients of f and g are parallel
● Solution is where g(x)=0

197 Wolfgang Bangerth

Lagrange multipliers

Conclusion:
● The solution is where gradients of f and g are parallel
● The solution is where g(x)=0

In mathematical terms:
The (local) solutions of

are where the following conditions hold for some value of λ:

minimize f x=E x , z =∑i
Espring , ix , z E pot x , z 

 g x =∥x−x0∥−L rod = 0

∇ f x −∇ g x  = 0
g x = 0

198 Wolfgang Bangerth

Lagrange multipliers

Consider the same situation for three variables and two
constraints:

f x = f x , y , z 

199 Wolfgang Bangerth

Lagrange multipliers

Constraint 1: Contours of g
1
(x)

 g
1
(x)=0 g

1
(x)=1 g

1
(x)=2

200 Wolfgang Bangerth

Lagrange multipliers

Constraint 2: Contours of g
2
(x)

g
2
(x)=-1

g
2
(x)=0

g
2
(x)=1

201 Wolfgang Bangerth

Lagrange multipliers

Constraints 1+2 at the same time

g
2
(x)=0

 g
1
(x)=0

202 Wolfgang Bangerth

Lagrange multipliers

Constraints 1+2 and f(x):

g
2
(x)=0

 g
1
(x)=0 local solutions

203 Wolfgang Bangerth

Lagrange multipliers

Conclusion:
●The solution is where the gradient of f can be written as a

linear combination of the gradients of g
1
, g

2

●The solution is where g
1
(x)=0, g

2
(x)=0

204 Wolfgang Bangerth

Lagrange multipliers

Generally (under certain conditions):
The (local) solutions of

are where the conditions

hold for some vector of Lagrange multipliers

Note: There are enough equations to determine both x and λ.

minimize f x  f x :ℝnℝ

 gx  = 0, g x :ℝ
n
ℝ

n e

∇ f x−⋅∇g x = 0
gx  = 0

∈ℝ
n e

205 Wolfgang Bangerth

Lagrange multipliers

By introducing the Lagrangian

the conditions

 can conveniently be written as

∇ f x−⋅∇g x = 0
gx  = 0

L x ,= f x −⋅g x , L:ℝn×ℝneℝ

∇
{x , }L x , = 0

206 Wolfgang Bangerth

Constraint Qualification: Example 1

When can we characterize solutions by Lagrange multipliers?
Consider the problem

with solution

At the solution, we have

and consequently

x*=0,0,0T

minimize f x = x12 y12z2,

 g1x = x =0,
 g2x = y = 0.

∇ f x*=2,2,0 T , ∇ g1x
*=1,0,0 T , ∇ g2x

*=0,1,0T

=2,2T

207 Wolfgang Bangerth

Constraint Qualification: Example 1

When can we characterize solutions by Lagrange multipliers?
Compare this with the problem

with the same solution

At the solution, we now have

and there are no Lagrange multipliers so that

x*=0,0,0T

minimize f x = x12 y12z2,

 g1x = x2= 0,

 g2x = y2= 0.

∇ f x*=2,2,0 T , ∇ g1x
*=∇ g2x

*=0,0,0T

∇ f x*
=⋅∇ g x*



208 Wolfgang Bangerth

Constraint Qualification: Example 2

When can we characterize solutions by Lagrange multipliers?
Consider the problem

There is only a single
point at which both
constraints are satisfied:

x⃗*
=(0,0)T

minimize f x = y ,
 g1x = x−12 y2−1= 0,

 g2x = x1
2
 y

2
−1= 0.

209 Wolfgang Bangerth

Constraint Qualification: Example 2

When can we characterize solutions by Lagrange multipliers?
Consider the problem

At the solution , we have

and again there are no Lagrange multipliers so that

x*=0,0T

minimize f x = y ,
 g1x = x−12 y2−1= 0,

 g2x = x1
2
 y

2
−1= 0.

∇ f x*=0,1T , ∇ g1x
*=−∇ g 2x

*=2,0T

∇ f x*
=⋅∇ g x*



210 Wolfgang Bangerth

Constraint Qualification: LICQ

Definition:
We say that at a point the linear independence constraint
qualification (LICQ) is satisfied if

is a set of n
e
 linearly independent vectors.

Note: This is equivalent to saying that the matrix

has full row rank n
e
.

x

{∇ g i x}i=1... n e

A = [
[∇ g 1x]

T

⋮

[∇ g ne
x]

T]

211 Wolfgang Bangerth

First-order necessary conditions

Theorem:
Suppose that is a local solution of

and suppose that at this point the LICQ holds. Then there exists a
unique Lagrange multiplier vector so that the following conditions are
satisfied:

Note: - These conditions are often referred to as the Karush-Kuhn-
Tucker (KKT) conditions.

- If LICQ does not hold, there may still be a solution,
but it may not satisfy the KKT conditions!

x*

minimize f x  f x :ℝnℝ

 gx  = 0, g x :ℝ
n
ℝ

n e

∇ f x−⋅∇g x = 0
gx  = 0

212 Wolfgang Bangerth

First-order necessary conditions

Theorem (alternative form):
Suppose that is a local solution of

and suppose that at this point the LICQ holds. Then

for every vector tangential to all constraints,

or equivalently

minimize f x  f x :ℝnℝ

 gx  = 0, g x :ℝ
n
ℝ

n e

∇ f x*⋅w = 0

w ∈ {v : v⋅∇ gix
*=0, i=1. ..ne}

x*

w ∈ Null A

213 Wolfgang Bangerth

Second-order necessary conditions

Theorem:
Suppose that is a local solution of

and suppose that at this point the first order necessary conditions
and the LICQ hold. Then

for every vector tangential to all constraints,

minimize f x  f x :ℝnℝ

 gx  = 0, g x :ℝ
n
ℝ

n e

wT∇2 f x*⋅w ≥ 0

w ∈ Null A

x*

214 Wolfgang Bangerth

Second-order sufficient conditions

Theorem:
Suppose that at a feasible point the first order necessary (KKT)
conditions hold. Suppose also that

for all tangential vectors

Then is a strict local minimizer of

x

minimize f x  f x :ℝnℝ

 gx  = 0, g x :ℝ
n
ℝ

n e

wT∇2 f x ⋅w  0

w ∈ Null A , w≠0

x

215 Wolfgang Bangerth

Characterizing the null space of A

All necessary and sufficient conditions required us to test
conditions like

for all tangential vectors

In practice, this can be done as follows:

If LICQ holds, then dim(Null(A))=n-n
e
. Thus, there exist n-n

e

vectors z
l
 so that Az

l
=0 , and every vector w can be written as

This matrix Z can be computed from A for example by a QR
decomposition.

wT∇2 f x ⋅w  0

w ∈ Null A , w≠0

w = Z  , w∈ℝn , Z=[z 1 , ... ,zn−n e]∈ℝ
n×n−ne , ∈ℝn−ne

216 Wolfgang Bangerth

Characterizing the null space of A

With this matrix Z , the following statements are equivalent:

First order
necessary
conditions

Second order
necessary
conditions

Second order
sufficient
conditions

wT∇ 2 f x ⋅w  0 ∀ w ∈ Null A , w≠0

ZT [∇ 2 f x ]Z is positive definite

wT
∇

2 f x ⋅w ≥ 0 ∀ w ∈ Null A

ZT [∇ 2 f x ]Z is positive semidefinite

∇ f x ⋅w = 0 ∀w ∈ Null A

[∇ f x ]
T

Z = 0

217 Wolfgang Bangerth

Part 9

Quadratic programming

minimize f x =
1
2

xT G xdT xe

 gx =A x−b = 0

218 Wolfgang Bangerth

Solving equality constrained problems

Consider a general nonlinear program with general nonlinear
equality constraints:

Maybe we can solve such problems with an iterative scheme
like unconstrained ones?

Analogy: For unconstrained nonlinear programs, we
approximate f(x) in each iteration by a quadratic model. For
quadratic functions, we can find minima in one step:

[∇ 2 f x0] p0=−∇ f x0 ⇔ x1=x0−H−1Hx0d=−H−1 d

min x f x=
1
2

xT H xdT xe

minimize f x  f x :ℝnℝ

 gx  = 0, g x :ℝ
n
ℝ

ne

219 Wolfgang Bangerth

Solving equality constrained problems

For the general nonlinear constrained problem:
Assuming a condition like LICQ holds, then we know that we
need to find points at which

Alternatively, we can write this as

with

∇ f x−⋅∇g x = 0
gx  = 0

L x ,= f x −⋅g x , L:ℝn
×ℝ

neℝ

∇
{x , }L x , = 0

{x ,}

220 Wolfgang Bangerth

Solving equality constrained problems

If we combine then this can also be written as

which looks like the first-order necessary condition for
minimizing L(z). We then may think of finding solutions as
follows:
● Start at a point

● Compute search directions using

● Compute a step length

● Update

Note: This is misleading, since we will in fact not look for
minima of L(z), but for saddle points. Consequently,
is indefinite.

∇ z L z  = 0

z={x ,}

z0=[x0 , 0]
T

[∇ z
2 L zk] pk=−∇ z L zk 

zk1=zkk p k

k

∇ z
2 L  zk 

221 Wolfgang Bangerth

Solving equality constrained problems

The equations we have to solve in each Newton iteration have
the form

Because

the equations we have to solve read in component form:

[∇ z
2 L zk] pk = −∇ z L zk 

Lx ,=f x−⋅g x  , L :ℝn×ℝneℝ

∇
2 f  x k−∑i

i , k∇
2 g i  x k −∇ g  x k

−∇ g  x k 
T 0  pk

x

pk
 =

 = −∇ f  x k −∑i
 i , k∇ gi  x k 

−g  x k  

222 Wolfgang Bangerth

Linear quadratic programs

Consider first the linear quadratic case with symm. matrix G:

with

Then the first search direction needs to satisfy the (linear) set
of equations

or equivalently:

f x=
1
2

xT G xdT xe , f :ℝn
ℝ

g x =Ax−b , A∈ℝne×n , b∈ℝne

L x ,= f  x−T g x=
1
2

xT G xdT xe−T
Ax−b

 G −AT

−A 0 p0
x

p0
 = −Gx 0d−0

T A
−Ax0−b 

[∇ z
2 L z0] p0 = −∇ z L z0

223 Wolfgang Bangerth

Linear quadratic programs

Theorem 1: Assume that G is positive definite in all feasible
directions, i.e. ZTGZ is positive definite, and that the matrix A
has full row rank. Then the KKT matrix

is nonsingular and the system

has a unique solution.

 G −AT

−A 0 p0
x

p0
 = −Gx 0d−0

T A
−Ax0−b 

 G −AT

−A 0 

224 Wolfgang Bangerth

Linear quadratic programs

Theorem 2: Assume that G is positive definite in all feasible
directions, i.e. ZTGZ is positive definite. Then the solution of
the linear quadratic program

is equivalent to the first iterate

that results from solving the linear system

irrespective of the starting point x
0
.

min x f  x=
1
2

xT G xd T xe

 g  x =Ax−b = 0

x1 = x0 p0
x

 G −AT

−A 0 p0
x

p0
 = −Gx 0d−0

T A
−Ax0−b 

225 Wolfgang Bangerth

Linear quadratic programs

Theorem 3: Assume that G is positive definite in all feasible
directions, i.e. ZTGZ is positive definite, and that the matrix A
has full row rank. Then the KKT matrix

has n positive, n
e
 negative eigenvalues, and no zero

eigenvalues. In other words, the KKT matrix is indefinite but
non-singular, and the quadratic function

in has a single stationary point that is a saddle point.

 G −AT

−A 0 

L x ,=
1
2

xT G xdT xe−T
Ax−b

{x ,}

226 Wolfgang Bangerth

Part 10

Sequential Quadratic Programming
(SQP)

minimize f x 
 gx  = 0

227 Wolfgang Bangerth

The basic SQP algorithm

For , the equality-constrained optimality conditions read

Like in the unconstrained Newton's method, sequential
quadratic programming uses the following basic iteration:

● Start at a point

● Compute search directions using

● Compute a step length

● Update

∇ z L z  = 0

z={x ,}

z0=[x0 , 0]
T

[∇ z
2 L zk] pk=−∇ z L zk 

zk1=zkk p k

k

228 Wolfgang Bangerth

Computing the SQP search direction

The equations for the search direction are

which we will abbreviate as follows:

with

∇
2f xk −∑i

 i , k∇
2 gi xk  −∇ g xk 

−∇ g xk 
T 0 pk

x

pk
 =

 = −∇ f  xk −∑i
 i , k∇ gi  xk 

−g xk  

 W k −Ak

−Ak
T 0 p k

x

p k
  = −∇ f xk −∑i

 i , k∇ gi xk 

−g xk  
Wk = ∇ x

2 L (xk ,λk)
Ak = ∇ x g(x k) = −∇ x∇λ L(xk ,λ k)

229 Wolfgang Bangerth

Computing the SQP search direction

Theorem 1: Assume that W is positive definite in all feasible
directions, i.e. Z

k

TW
k
Z

k
 is positive definite, and that the matrix

A
k
 has full row rank. Then the KKT matrix of SQP step k

is nonsingular and the system that determines the SQP search
direction

has a unique solution.

Proof: Use Theorem 1 from Part 9.

Note: The columns of the matrix Z
k
 span the null space of A

k
.

 W k −Ak
T

−Ak 0 p k
x

p k
  = −∇ x L xk ,k 

−g xk 

 W k −Ak
T

−Ak 0 

230 Wolfgang Bangerth

Computing the SQP search direction

Theorem 2: The solution of the SQP search direction system

equals the minimizer of the problem

that approximates the original nonlinear equality-constrained
minimization problem.

Proof: Essentially just use Theorem 2 from Part 9.

Note: This means that SQP in each step minimizes a quadratic
model of the Lagrangian, subject to linearized constraints.

 W k −Ak
T

−Ak 0 p k
x

p k
  = −∇ x L xk ,k 

−g xk 
minx mk pk

x
=L xk ,k ∇x L  xk ,k

T p k
x


1
2

pk
xT
∇ x

2 L xk ,k  pk
x

 g  xk ∇ g xk 
T pk

x = 0

231 Wolfgang Bangerth

Computing the SQP search direction

Theorem 3: The SQP iteration with full steps, i.e.

converges to the solution of the constrained nonlinear
optimization problem with quadratic order if (i) we start close
enough to the solution, (ii) the LICQ holds at the solution and
(iii) the matrix Z

*

TW
*
Z

*
 is positive definite at the solution.

 W k −Ak
T

−Ak 0 p k
x

p k
  = −∇ x L xk ,k 

−g xk 
xk1=xk pk

x , k1=kp k


232 Wolfgang Bangerth

How SQP works

Example 1:

The search direction is then computed using the step

In other words, the linearized constraint enforces that

p2,k
x = −(x2,k+1) → x2,k+1=x2, k+ p2,k

x = −1

min f x =
1
2
x1

2
x2

2


 g x = x21 = 0

min mk (pk
x) = L(xk , λk) + (x1,k

x2, k−λk
)

T

pk
x +

1
2

pk
xT pk

x

 x2,k+1 + (01)
T

pk
x = 0

233 Wolfgang Bangerth

How SQP works

Example 2:

Search direction is then computed by

In particular, if we are currently at (0,-2), this enforces

min mk pk
x 

 x2, k−sin x1,k   −cos x1, k

1 
T

pk
x = 0

min f x 
 g x = x2−sinx1 = 0

−p1, kp2,k = 2

234 Wolfgang Bangerth

How SQP works

Example 3:

If constraint is already satisfied at a
step, then search direction solves

In other words: The update step can only be tangential to
the constraint (along the linearized constraint)!

min mk pk
x 

 g xk ∇ gxk 
T pk

x = ∇ g xk
T pk

x = 0

min f x 
 g x = 0

235 Wolfgang Bangerth

Hessian modifications for SQP

The SQP step

is equivalent to the minimization problem

or abbreviated:

From this, we may expect to get into trouble if the matrix
Z

k

TW
k
Z

k
 is not positive definite.

 W k −Ak
T

−Ak 0 p k
x

p k
  = −∇ x L xk ,k 

−g xk 
minx mk pk

x
=L xk ,k ∇x L  xk ,k

T p k
x


1
2

pk
xT
∇ x

2 L xk ,k  pk
x

 g  xk ∇ g xk 
T pk

x = 0

minx mk pk
x
=Lk∇ x f k

T
−k

T Ak  pk
x


1
2

pk
xT W k pk

x

 g xk Ak
T pk

x = 0

236 Wolfgang Bangerth

Hessian modifications for SQP

If the matrix Z
k

TW
k
Z

k
in the SQP step

is not positive definite, then there may not be a unique solution.

There exist a number of modifications to ensure that an
alternative step can be computed that satisfies

instead.

 W k −Ak
T

−Ak 0 p k
x

p k
  = −∇ x L xk ,k 

−g xk 

 W k −A k
T

−Ak 0  pk
x

pk
 = −∇x L  xk ,k

−g xk  

237 Wolfgang Bangerth

Line search procedures for SQP

Motivation: For unconstrained problems, we used f(x) to
measure progress along a direction p

k
 computed from a

quadratic model m
k
 that approximates f(x).

Idea: For constrained problems, we could consider L(z) to
measure progress along a search direction p

k
 computed using

the SQP step based on the model m
k
.

Problem 1: The Lagrangian L(z) is unbounded. E.g., for
linear-quadratic problems, L(z) is quadratic of saddle-point form.
Indeed, we are now looking for this saddle point of L.

Consequence 1: We can't use L(z) to measure progress in line
search algorithms.

238 Wolfgang Bangerth

Line search procedures for SQP

Motivation: For unconstrained problems, we used f(x) to
measure progress along a direction p

k
 computed from a

quadratic model m
k
 that approximates f(x).

Idea: For constrained problems, we could consider L(z) to
measure progress along a search direction p

k
 computed using

the SQP step based on the model m
k
.

Problem 2: Some step lengths may lead to a significant
reduction in f(x) but take us far away from constraints g(x)=0. Is
this better than a step that may increase f(x) but lands on the
constraint ?

Consequence 2: We need a merit function that balances
decrease of f(x) with satisfying the constraint g(x).

239 Wolfgang Bangerth

Line search procedures for SQP

Solution: Drive step length determination using a merit
function that contains both f(x) and g(x).

Examples: Commonly used choices are the l
1
 merit function

with

or Fletcher's merit function

with

1x  = f  x
1

∥g x ∥1

F  x = f  x−  xT g  x
1

2
∥g  x∥2

 x =[A  x A  xT]−1 A  x∇ f  x

1

=∥k1∥∞ , 0

240 Wolfgang Bangerth

Line search procedures for SQP

Definition: A merit functions is called exact if the constrained
optimizer of the problem

is also a minimizer of the merit function.

Note: Both the l
1
 and Fletcher's merit function

are exact for appropriate choices of .

min x f  x
 g  x  = 0

1x  = f  x
1

∥g x ∥1

F  x = f  x−  xT g  x
1

2
∥g  x∥2

 ,

241 Wolfgang Bangerth

Line search procedures for SQP

Theorem 4: The SQP search direction that satisfies

is a direction of descent for both the l
1
 as well as Fletcher's

merit function if (i) the current point x
k
 is not a stationary point

of the equality-constrained problem, and (ii) the matrix Z
k

TW
k
Z

k

is positive definite.

 W k −Ak
T

−Ak 0 p k
x

p k
  = −∇ x L xk ,k 

−g xk 

242 Wolfgang Bangerth

A practical SQP algorithm

Algorithm: For k=0,1,2,...
● Find a search direction using the KKT system

● Determine step length using a backtracking linear search,
a merit function and the Wolfe (or Goldstein) conditions:

● Update the iterate using either

or

 W k −Ak
T

−Ak 0 p k
x

p k
  = −∇ x L xk ,k 

−g xk 

 x k pk
x
 ≤  x k   c1∇ x k ⋅pk

x

∇ x k pk
x
⋅pk

x ≥ c2∇  x k ⋅pk
x

xk + 1=xk+ αk pk
x , λk+ 1=λk+ αk p k

λ

x k1=x kk pk
x , k1=[Ak1 Ak1

T
]
−1 Ak1∇ f  x k1

243 Wolfgang Bangerth

Parts 8-10

Summary of methods for
equality-constrained Problems

minimize f x
 g i x  = 0, i=1,... , ne

244 Wolfgang Bangerth

Summary of methods

Two general methods for equality-constrained problems:

● Penalty methods (e.g. the quadratic penalty method)
convert constrained problem into unconstrained one that can
be solved with techniques well known.

However, often lead to ill-conditioned problems

● Lagrange multipliers reformulate the problem into one
where we look for saddle points of a Lagrangian

● Sequential quadratic programming (SQP) methods solve
a sequence of quadratic programs with linear constraints,
which are simple to solve

● SQP methods are the most powerful methods.

385 Wolfgang Bangerth

Part 11

Inequality-constrained
Problems

minimize f x
 g i x  = 0, i=1,... , ne

 hix  ≥ 0, i=1,. .. , n i

386 Wolfgang Bangerth

An example

Consider the example of the body suspended from a ceiling
with springs, but with an element of fixed minimal length
attached to a fixed point:

To find the position of the body we now need to solve the
following problem:

minimize f x=E x , z =∑i
Espring , ix , z E pot x , z 

 ∥x− x0∥−Lrod ≥ 0

387 Wolfgang Bangerth

An example

We can gain some insight into the problem by plotting the
energy as a function of (x,z) along with the constraint:

388 Wolfgang Bangerth

Definitions

We call this the standard form of inequality constrained
problems:

We will also frequently write this as follows, implying
(in)equality elementwise:

minimize x∈D⊂Rn f x 
 g i x  = 0, i=1... ne

 hix  ≥ 0, i=1 ... ni

minimize x∈D⊂Rn f x 
 g x  = 0
 hx  ≥ 0

389 Wolfgang Bangerth

Definitions

Let x* be the solution of

We call a constraint active if it is zero at the solution x*:

● Obviously, all equality constraints are active, since a
solution needs to satisfy g(x*)=0

● Some inequality constraints may not be active if it so
happens that for some index i

● Other inequality constraints may be active if

We call the set of all active (equality and inequality)
constraints the active set.

minimize x∈D⊂Rn f x 
 g i x  = 0, i=1... ne

 hix  ≥ 0, i=1 ... ni

hi  x* 0

hi  x *=0

390 Wolfgang Bangerth

Definitions

Note: If x* is the solution of

then it is also the solution of the problem

where we have dropped all inactive constraints and made
equalities out of all active constraints.

minimize x∈D⊂Rn f x 
 g i x  = 0, i=1... ne

 hix  ≥ 0, i=1 ...ni

minimize x∈D⊂Rn f x 
 g i x  = 0, i=1... ne

 hix  = 0, i=1 ...ni ,i is active at x*

391 Wolfgang Bangerth

Definitions

A trivial reformulation of the problem is obtained by defining the
feasible set:

Then the original problem is equivalently recast as

Note 1: This reformulation is not of much practical interest.

Note 2: The feasible set can be continuous or discrete. It can
also be empty if the constraints are mutually incompatible. In
the following we will always assume that it is continuous and
non-empty.

={x∈Rn : g  x=0, hx ≥0}

minimizex∈D∩⊂Rn f x

392 Wolfgang Bangerth

The quadratic penalty method

Observation: The solution of

must lie within the feasible set.

Idea: Let's relax the constraint and allow to search also
where g(x) is small but not zero, or where h(x) is small and
negative. However, make sure that the objective function
becomes very large if far away from the feasible set:

Q
μ
(x) is called the quadratic relaxation of the minimization

problem. μ is the penalty parameter, and

minimizex∈D⊂R n Q  x= f  x
1

2
∥g  x∥2


1

2
∥[h  x ]−∥2

minimize x∈D⊂Rn f  x
 g  x = 0
 h x ≥ 0

[h  x]− = min {0 , h  x}

393 Wolfgang Bangerth

The quadratic penalty method

Replace the original constrained minimization problem

by an unconstrained method with a quadratic penalty term:

Example:

minimize f  x 
 gi  x = 0, i=1,... , ne

 hi  x ≥ 0, i=1,. .. , ni

minimize f  x =sin  x
 h1 x=x−0 ≥ 0,
 h2 x=1−x ≥ 0.

μ=0.01

μ=0.1

minimize
x∈D⊂Rn Q


 x = f  x 1

2
∥g  x∥2

1
2
∥[h  x]−∥2

394 Wolfgang Bangerth

The quadratic penalty method

Negative properties of the quadratic penalty method:
● minimizers for finite penalty parameters are usually

infeasible;
● problem is becoming more and more ill-conditioned near

optimum as penalty parameter is decreased, Hessian large;
● for inequality constrained problems, Hessian not twice

differentiable at constraints.

=0.1

=0.01

=0.02

minimize x2
2 s.t. g x =x 2x 1

2=0

=2
=0.2

395 Wolfgang Bangerth

The logarithmic barrier method

f x 

minimize f x =sinx  s.t. x≥0, x≤1

=0.1 =0.05

Replace the original constrained minimization problem

by an unconstrained method with a logarithmic barrier term:

minimize f  x 
 hi  x ≥ 0, i=1,. .. , ni

minimizex∈D⊂Rn Q

 x= f x∑i=1

ni

−log hi x 

396 Wolfgang Bangerth

The logarithmic barrier method

Properties of successive minimization of

● intermediate minimizers are feasible, since Q
μ
(x)=∞ in the

infeasible region; the method is an interior point method.
● Q is smooth if constraints are smooth;
● we need a feasible point as starting point;
● ill-conditioning and inadequacy of Taylor expansion remain;
● Q

μ
(x) may be unbounded from below if h(x) unbounded.

● inclusion of equality constraints as before by quadratic
penalty method.

Summary:

This is an efficient method for the solution of constrained
problems.

minimize x Q

x  = f x  − ∑

i

log h ix 

397 Wolfgang Bangerth

Algorithms for penalty/barrier methods

Algorithm (exactly as for the equality constrained case):
Given
For t=0,1, 2, ...:

Find approximation to the (unconstrained) mimizer

of that satisfies

using as starting point.

Set t=t+1,

Typical values:

x t
*

∥∇Q t
 x t

*
∥≤t

xt
*

Q t
 x

x0
start , { t }0, { t}0

xt
start

xt
start
=xt−1

*

 t=c t−1 , c=0.1 to 0.5

 t=c t−1

398 Wolfgang Bangerth

The exact penalty method

Previous methods suffered from the fact that minimizers of
Q

μ
(x) for finite μ

are not optima of the original problem.

Solution: Use

minimize x 


1
x  = f  x

1
 [∑i ∣g ix ∣∑

i

∣[h ix ]
−
∣]

minimize f x =sinx  s.t. x≥0, x≤1

f x 


−1
=10


−1
=1 f x 


−1
=10


−1
=1


−1
=4

399 Wolfgang Bangerth

The exact penalty method

Properties of the exact penalty method:
● for sufficiently small penalty parameter, the optimum of the

modified problem is the optimum of the original one;
● possibly only one iteration in the penalty parameter needed

if size of μ is known in advance;
● this is a non-smooth problem!

This is an efficient method
if (but only if!) a solver for nonsmooth problems is available!

400 Wolfgang Bangerth

Part 12

Theory of
Inequality-Constrained

Problems

minimize f x
 g i x  = 0, i=1,... , ne

 hix  ≥ 0, i=1,. .. , n i

401 Wolfgang Bangerth

Lagrange multipliers

Consider a (single) constraint h(x) as a function for all x:

 h(x,z)=-0.1 h(x,z)=0 h(x,z)=0.1

h x =∥x− x0∥−L rod ≥ 0

402 Wolfgang Bangerth

Lagrange multipliers

Now look at the objective function f(x):

f x =∑i=1

3 1
2

D ∥x−x i∥−L0 
2

403 Wolfgang Bangerth

Lagrange multipliers

Both f(x), h(x) for the case of a rod of minimal length 20cm:

infeasible
region

 h(x,z)=0 with L
rod

=20cm

404 Wolfgang Bangerth

Lagrange multipliers

Could this be a solution x*?

Answer: No – moving into the feasible direction would also
reduce f(x).

Rather, the solution will equal the unconstrained one, and the
inequality constraint will be inactive at the solution.

x *
∇ f  x * ∇ h  x *

405 Wolfgang Bangerth

Lagrange multipliers

Both f(x), h(x) for the case of a rod of minimal length 35cm:

infeasible
region

 h(x,z)=0 with L
rod

=35cm

406 Wolfgang Bangerth

Lagrange multipliers

Could this be a solution x*?

Answer: Yes – moving into feasible direction would increase f(x).

Note: The gradients of h and f are parallel and in the same
direction.

x * ∇ f x * 
∇ h  x *

407 Wolfgang Bangerth

Lagrange multipliers

Conclusion:
● Solution can be where the constraint is not active
● If the constraint is active at the solution: gradients of f and h

are parallel, but not antiparallel

In mathematical terms: The (local) solutions of

are where one of the following conditions hold for some λ,μ:

 or

minimize f x =E x , z =∑i
E spring , ix , z Epot x , z 

 h x =∥x−x0∥−Lrod ≥ 0

∇ f x −⋅∇ hx = 0
hx  = 0
 ≥ 0

∇ f x  = 0
h x  0

408 Wolfgang Bangerth

Lagrange multipliers

Conclusion, take 2: Solutions are where either

 or

which could also be written like so:

 or

 (constraint is active) (constraint is inactive)

∇ f x −⋅∇ hx = 0
hx  = 0
 ≥ 0

∇ f x  = 0
h x  0

∇ f x −⋅∇ hx = 0
hx  = 0
 ≥ 0

∇ f x −⋅∇ hx  = 0
h x  0
 = 0

409 Wolfgang Bangerth

Lagrange multipliers

Conclusion, take 3: Solutions are where

 or

or written differently:

Note: The last condition is called complementarity.

∇ f x −⋅∇ hx = 0
hx  = 0
 ≥ 0

∇ f x −⋅∇ h x = 0
hx  ≥ 0
 ≥ 0
 hx  = 0

∇ f x −⋅∇ hx  = 0
h x  0
 = 0

410 Wolfgang Bangerth

Lagrange multipliers

Same idea, but with two minimum length elements:

infeasible
region

 h
1
(x,z)=0 h

2
(x,z)=0

411 Wolfgang Bangerth

Lagrange multipliers

Could this be a solution x*?

Answer: No – moving into feasible direction would decrease f(x).

Note: The gradient of f is antiparallel to the gradient of h
1
. h

2
 is an

inactive constraint so doesn't matter here.

x *∇ f x * 

∇h1 x *

412 Wolfgang Bangerth

Lagrange multipliers

Same idea, but with two different minimum length elements:

infeasible
region

 h
1
(x,z)=0 h

2
(x,z)=0

413 Wolfgang Bangerth

Lagrange multipliers

Could this be a solution x*?

Answer: Yes – moving into feasible direction would increase f(x).

Note: The gradient of f is a linear combination (with positive
multiples) of the gradients of h

1
 and h

2
.

x*

∇ f x * 

∇h1 x *
∇h2 x *

414 Wolfgang Bangerth

Constraint Qualification: LICQ
Definition:
We say that at a point x the linear independence constraint
qualification (LICQ) is satisfied if

is a set of linearly independent vectors.

Note: This is equivalent to saying that the matrix of gradients of all
active constraints,

has full row rank (i.e. its rank is
 n

e
 + # of active ineq. constraints).

{∇ gi  x}i=1 ... ne
,{∇ hi  x}i=1. ..ni ,i active at x

A = [
[∇ g1x ]

T

⋮

[∇ gne
x]T

[∇ h first active ix ]
T

⋮

[∇ h last active ix ]
T
]

415 Wolfgang Bangerth

First-order necessary conditions
Theorem:
Suppose that x* is a local solution of

and suppose that at this point the LICQ holds. Then there exist
unique Lagrange multipliers so that these conditions are satisfied:

Note: These are often called the Karush-Kuhn-Tucker (KKT)
conditions.

minimize f  x f x :ℝn
ℝ

 g  x = 0, g  x:ℝn
ℝ

ne

 h x ≥ 0, h  x:ℝn
ℝ

ni

∇ f  x−⋅∇ g x−⋅∇ h  x = 0
g  x = 0
h x ≥ 0
 ≥ 0
 i hi x = 0

416 Wolfgang Bangerth

First-order necessary conditions

Note: By introducing a Lagrangian

the first two of the necessary conditions

follow from requiring that , but not the
rest.

Consequence: We can not hope to find simple Newton-based
methods like SQP to solve inequality-constrained problems.

L x , , =f  x−T g x−T h x 

∇ f  x−⋅∇ g x−⋅∇ h  x = 0
g  x = 0
h x ≥ 0
 ≥ 0
 i hi x = 0

∇ z L z with z={x , , }

417 Wolfgang Bangerth

First-order necessary conditions

Note: The necessary conditions

imply that at x* there is a unique set of (active) Lagrange
multipliers so that

where A is the matrix of gradients of active constraints. An
alternative way of saying this is

However, the opposite is not true: Multipliers must also satisfy

∇ f  x−⋅∇ g x−⋅∇ h  x = 0
g  x = 0
h x ≥ 0
 ≥ 0
 i hi x = 0

∇ f (x) ∈ span (rows of (A))

 i≥0

∇ f (x)=AT

(λ
[μ]active)

418 Wolfgang Bangerth

First-order necessary conditions

A more refined analysis: Consider the constraints

Intuitively (consider the isocontours), the vertex point x* is optimal
if the direction of steepest ascent is a member of the family
of red vectors above. That is, let F

0
 be the cone

Then x* is optimal if

∇ f  x

h1 x=x2−ax1≥0, h2 x=x2ax1≥0

F 0(x *)= {w∈ℝn : w=μ1∇ h1(x *)+ μ2∇ h2(x *) , μ1≥0, μ2≥0}

∇ f  x * ∈ F0 x *

419 Wolfgang Bangerth

First-order necessary conditions

A more refined analysis: Consider the constraints

Note: We can write things slightly different if we define

i.e. the set of vectors that form angles less than 90 degrees with
all vectors in F

0
. This set can also be written as

F1x * = {w∈ℝn : wT a≥0 ∀ a∈F0 x *}

h1 x=x2−ax1≥0, h2 x=x2ax1≥0

F1x * = {w∈ℝn : wT
∇ h1x *≥0, wT

∇ h2x *≥0}

420 Wolfgang Bangerth

First-order necessary conditions

A more refined analysis: If the problem also has equality
constraints

all of which are active at x*, then the cone F
1
 is

In general:

Note: This is the cone of all feasible directions.

g x=0, h1x≥0, h2x ≥0

F1x * = {w∈ℝn : wT
∇ g  x *=0, wT

∇ h1 x *≥0, wT
∇ h2 x *≥0}

F1x * ={w∈ℝ
n : wT

∇ gi x * =0, i=1,... ,n e

 wT
∇ hi x * ≥0, i=1,. .. , ni, constraint i is active at x *}

421 Wolfgang Bangerth

First-order necessary conditions

Theorem (a different version of the first order necessary
conditions): If x* is a local solution and if the LICQ hold at this
point, then

In other words: Whatever direction w in F
1
 we go into from x*, the

objective function to first order stays constant or increases.

Note: This is a necessary condition, but not sufficient. If f(x) stays
constant to first order it may still decrease in higher order Taylor
terms to make x* a local maximum or saddle point. But, if x* is a
solution, then the condition above has to be satisfied.

∇ f  x *T w ≥ 0 ∀w∈F1 x* 

422 Wolfgang Bangerth

Second-order necessary conditions

Definition:
Let x* be a local solution of an inequality constrained problem
satisfying

We say that strict complementarity holds if for each inequality
constraint i exactly one of the following conditions is true:

●

●

In other words, we require that the Lagrange multiplier is nonzero
for all active inequality constraints.

∇ f x −⋅∇ g x−⋅∇ g x  = 0
gi x = 0, i=1. ..ne

hix  ≥ 0, i=1. ..ni

i ≥ 0, i=1. ..ni

i hix  = 0, i=1. ..ni

 i=0

hi x * =0

423 Wolfgang Bangerth

Second-order necessary conditions

Definition:
Let x* be a local solution and assume that strict complementarity
holds. Then define as before

and the subspace of all tangential directions as

F2x * = {w∈ℝ
n : wT

∇ gi x * =0, i=1,... , ne

 wT
∇ hi  x* =0, i=1,. .. , ni , constraint i is active at x *}

F1x * F2x *

F1x * ={w∈ℝ
n : wT

∇ gi x * =0, i=1,... ,n e

 wT
∇ hi x * ≥0, i=1,. .. , ni, constraint i is active at x *}

424 Wolfgang Bangerth

Second-order necessary conditions

Note:
The subspace of all tangential directions

can be trivial (i.e. contain only the zero vector) if n or more
constraints are active at x*.

Example:

Here, F
1
 is a nonempty set, but

F
2
 contains only the zero vector.

F2x * = {w∈ℝ
n : wT

∇ gi x * =0, i=1,... , ne

 wT
∇ hi  x* =0, i=1,. .. , ni , constraint i is active at x *}

425 Wolfgang Bangerth

Second-order necessary conditions

Theorem (necessary conditions):
Let x* be a local solution that satisfies the first order necessary
conditions with unique Lagrange multipliers. Assume that strict
complementarity holds. Then

Note: This means that f(x) can not
“curve down” to second order along
tangential directions. The first order
Conditions imply that it doesn't “slope”
in these directions.

wT
∇ x

2 L x* ,* , *w=

 =wT [∇ x
2 f  x *−*T

∇ x
2 g x *−*∇ x

2h  x *]w ≥ 0
 ∀w∈F2x * 

F2x *

426 Wolfgang Bangerth

Second-order sufficient conditions

Theorem (sufficient conditions):
Let x* be a local solution that satisfies the first order necessary
conditions with unique Lagrange multipliers. Assume that strict
complementarity holds. Then

Note: This means that f(x) actually
“curves up” in a neighborhood of x*,
at least in tangential directions!

For all other directions, we know that f(x)
slopes up from the first order necessary conditions.

wT
∇ x

2 L x * ,* ,*w=

 =wT [∇ x
2 f  x *−*T

∇ x
2 g x *−*∇x

2h  x *]w  0
 ∀w∈F2 x* ,w≠0

F2x *

427 Wolfgang Bangerth

Second-order sufficient conditions

Remark:
If strict complementarity holds, then the definition

is equivalent to

with the matrix of gradients of active constraints A. If A does have
a null space, then the second order necessary and sufficient
conditions can also be written as

respectively, where the columns of Z are a basis of the null space
of A.

Z T
∇ x

2 L x * ,* , *Z is positive semidefinite

Z T∇ x
2 L x * ,* , *Z is positive definite

F2x * = {w∈ℝ
n : wT

∇ gi x * =0, i=1,... , ne

 wT
∇ hi  x* =0, i=1,. .. , ni , constraint i is active at x *}

F2x * = null A x * 

428 Wolfgang Bangerth

Second-order necessary conditions

Definition (if strict complementarity does not hold):
Let x* be a local solution at which the KKT conditions with unique
Lagrange multiplier hold. Then define

F2x * ,* = {
w∈ℝn : wT

∇ gi x* =0, i=1,. .. , ne

 wT
∇ hi x *=0, i=1,. .. , ni , constraint i active and  i *0

 wT∇ hi x *≥0, i=1,. .. , ni , constraint i active and  i *=0}

F1x * F2x * ,* 

429 Wolfgang Bangerth

Second-order sufficient conditions

Theorem (sufficient conditions w/o strict complementarity):
Let x* be a local solution that satisfies the first order necessary
conditions with unique Lagrange multipliers. Assume that strict
complementarity does not hold. Then

Note: This now means that f(x) actually
“curves up” in a neighborhood of x*,
at least in tangential directions plus all
those directions for which we can't infer
anything from the first order conditions!

wT
∇ x

2 L (x * ,λ * ,μ *)w=

 =wT [∇ x
2 f (x *)−λ*T ∇x

2 g (x *)−μ*∇ x
2 h(x *)]w > 0

 ∀w∈F 2(x *) , w≠0

F2x *

430 Wolfgang Bangerth

Part 13

Active Set Methods for
Convex Quadratic Programs

minimize f x =
1
2

xT G xxT de

 gix =ai
T x−bi = 0, i=1,. .., ne

 hi x =i
T x−i ≥ 0, i=1,. .. , ni

431 Wolfgang Bangerth

General idea

Note:
Recall that if W* is the set of active (equality and inequality)
constraints at the solution x* then the solution of

equals the solution of the following QP:

minimize f  x= 1
2

xT G xxT de

 gi x=ai
T x−bi = 0, i=1,... , ne

 hi x=i
T x− i ≥ 0, i=1,. .. , ni

minimize f x =
1
2

xT G xxT de

 gi x=ai
T x−bi = 0, i=1,... ,n e

 hi x=i
T x−i = 0, i=1,. .. , ni ,i∈W *

432 Wolfgang Bangerth

General idea

Definition: Let

then the solution of the inequality-constrained QP equals the
solution of the following QP:

A=
a1

T

⋮

ane

T

1
T

⋮

ni

T


minimize f x =
1
2

xT G xxT de

 A |W * x−B |W * = 0

A |W=
a1

T

⋮

ane

T

first inequality in W
T

⋮

last inequality inW
T

B=
b1

⋮
bne

1

⋮

ni

 B |W=
b1

⋮
bn e

first inequality in W

⋮

last inequality inW



433 Wolfgang Bangerth

General idea

Consequence: If we knew the active set W* at the solution, we
could just solve the linearly constrained QP

and be done in one step.

Problem: Knowing the exact active set W* requires knowing the
solution x* because W* is the set of all equality constraints plus
those constraints for which

Solution: Solve a sequence of QPs using working sets W
k
 that we

iteratively refine until we have the exact active set W*.

minimize f x =
1
2

xT G xxT de

 A |W * x−B |W * = 0

hi x *=0

434 Wolfgang Bangerth

The active set algorithm

Algorithm:

● Choose initial working set W
0
 and feasible point x

0

● For k=0, 1, 2,:
- Find search direction p

k
 from x

k
 to the solution x

k+1
 of the QP

- If p
k
=0 and all μ

i
≥0 for constraints in W

k
 then stop

- Else if p
k
=0 but there are μ

i
<0, then drop inequality with the

 most negative μ
i
 from W

k
 to obtain W

k+1

- Else if x
k
+p

k
 is feasible then set x

k+1
=x

k
+p

k

- Otherwise, set x
k+1

=x
k
+α

k
p

k
 with

 and add the most blocking constraint to W
k+1

minimize f x =
1
2

xT G xxT de

 A |Wk
x−B |Wk

 = 0

k=min {1, min
i∉Wk ,i

T pk0

 i− i
T xk

i
T pk

}

435 Wolfgang Bangerth

The active set algorithm

Example:

Choose as initial working set W
0
={3,5} and as starting point

x
0
=(2,0)T.

minimize f x = x1−12 x2−2.5 2

 
1 −2
−1 −2
−1 2
1 0
0 1

 x−
−2
−6
−2
0
0
≥0 h

1
h

2

h
3

h
5

h
4

436 Wolfgang Bangerth

The active set algorithm

Example: Step 0

W
0
={3,5}, x

0
=(2,0)T.

Then: p
0
=(0,0)T because no other point is feasible for W

0

 implies

Consequently: W
1
={5}, x

1
=(2,0)T.

∇ f  x0− |W 0

T A |W 0
= 2
−5−3

5


T

−1 2
0 1=0 3

5
=−2
−1 

h
1

h
2

h
3

h
5

h
4

437 Wolfgang Bangerth

The active set algorithm

Example: Step 1

W
1
={5}, x

1
=(2,0)T.

Then: p
1
=(-1,0)T leads to minimum along only active constraint.

There are no blocking constraints to get to the point x
k+1

=x
k
+p

k

Consequently: W
2
={5}, x

2
=(1,0)T.

h
1

h
2

h
3

h
5

h
4

438 Wolfgang Bangerth

The active set algorithm

Example: Step 2

W
2
={5}, x

2
=(1,0)T.

Then: p
2
=(0,0)T because we are at minimum of active constraints.

 implies

Consequently: W
3
={}, x

3
=(1,0)T.

∇ f x2− |W 2

T A |W2
= 0
−5− 5 

T
0 1 =0 5 =−5 

h
1

h
2

h
3

h
5

h
4

439 Wolfgang Bangerth

The active set algorithm

Example: Step 3

W
3
={}, x

3
=(1,0)T.

Then: p
3
=(0,2.5)T but this leads out of feasible region. The first

blocking constraint is inequality 1, and the maximal step length is

Consequently: W
4
={1}, x

4
=(1,1.5)T.

3=0.6

h
1

h
2

h
3

h
5

h
4

440 Wolfgang Bangerth

The active set algorithm

Example: Step 4

W
4
={1}, x

4
=(1,1.5)T.

Then: p
4
=(0.4,0.2)T is the minimizer along the sole constraint.

There are no blocking constraints to get there.

Consequently: W
5
={1}, x

5
=(1.4,1.7)T.

h
1

h
2

h
3

h
5

h
4

441 Wolfgang Bangerth

The active set algorithm

Example: Step 5

W
5
={1}, x

5
=(1.4,1.7)T.

Then: p
5
=(0,0)T because we are already on the minimizer on the

constraint. Furthermore,

 implies

Consequently: This is the solution.

∇ f x5− |W 5

T A |W5
= 0.8
−1.6−1 

T
1 −2 =0 1 =0.8 ≥0

h
1

h
2

h
3

h
5

h
4

442 Wolfgang Bangerth

The active set algorithm

Theorem:
If G is strictly positive definite (i.e. the objective function is strictly
convex), then W

k
≠W

l
 for k ≠ l.

Consequently (because there are only finitely many possible
working sets), the active set algorithm terminates in a finite
number of steps.

Note:
In practice it may be that G is indefinite, and that for some
iterations the matrix Z

k

TGZ
k
is indefinite as well. We know that at

the solution, Z
*

TGZ
*
 is positive semidefinite, however. In that case,

we can't guarantee termination or convergence.

There are, however, Hessian modification techniques to deal with
this situation.

443 Wolfgang Bangerth

The active set algorithm

Remark:
In the active set method, we only change the working set W

k
 by at

most one element in each iteration.

One may be tempted to remove all constraints with negative
Lagrange multipliers at once, or add several constraints at the
same time when they become active.

However, we can then no longer guarantee that W
k
≠W

l
 for k ≠ l

and cycling may happen, i.e. we cycle between the same points
and sets x

k
, W

k
.

444 Wolfgang Bangerth

Active set SQP methods for general nonlinear problems

For equality constrained problems of the form

we used the SQP method. It repeatedly solves linear-quadratic
problems of the form

Here, each subproblem (a single SQP step) could be solved in
one iteration by solving a saddle point linear system.

minx mk pk
x
=L xk ,k ∇x L xk ,k

T p k
x


1
2

pk
xT
∇ x

2 L xk ,k  pk
x

 g xk ∇ g xk 
T pk

x = 0

minimize f (x) f (x):ℝn
→ℝ

 g (x) = 0, g (x):ℝn
→ℝ

n e

445 Wolfgang Bangerth

Part 14

Active Set SQP Methods

minimize f (x)
 g i (x) = 0, i=1,. .. , ne

 h i(x) ≥ 0, i=1,. .. , n i

446 Wolfgang Bangerth

For inequality constrained problems of the form

we repeatedly solve linear-quadratic problems of the form

Each of these inequality constrained quadratic problems can be
solved using the active set method, and after we have the
exact solution of this approximate problem we can re-linearize
around this point for the next sub-problem.

min x mk pk
x
=L xk ,k ∇ x L xk ,k 

T pk
x


1
2

pk
xT
∇ x

2 L xk ,k pk
x

 g xk ∇ g xk
T pk

x = 0

 h xk∇ h xk 
T pk

x ≥ 0

minimize f  x
 gi x = 0, i=1,. .. , ne

 hi x ≥ 0, i=1,... , ni

Active set SQP methods for general nonlinear problems

447 Wolfgang Bangerth

Note: Each time we solve a problem like

we have to do several active set iterations, though we can start
with the previous step's final working set and solution point.

Nevertheless, this is not going to be cheap, though it is
comparable to iterating over penalty/barrier parameters.

minx mk pk
x
=L xk ,k ∇ x Lxk ,k 

T pk
x


1
2

pk
xT
∇ x

2 Lx k ,k pk
x

 g xk ∇ g xk
T pk

x = 0

 hxk∇ h  xk 
T pk

x ≥ 0

Active set SQP methods for general nonlinear problems

448 Wolfgang Bangerth

Parts 11-14

Summary of methods for
inequality-constrained problems

minimize f x
 g i x  = 0, i=1,... , ne

 hix  ≥ 0, i=1,. .. , n i

449 Wolfgang Bangerth

Summary of methods

Two approaches to inequality-constrained problems:
● Penalty/barrier methods:

Convert the constrained problem into an unconstrained
one that can be solved with known techniques.

Barrier methods ensure that intermediate iterates remain
feasible with respect to inequality constraints

● Lagrange multiplier formulations lead to active set
methods

● Both kinds of methods are expensive. Penalty/barrier
methods are simpler to implement but can only find
minima located at the boundary of the feasible set at the
price of dealing with ill-conditioned problems.

450 Wolfgang Bangerth

Part 15

Global optimization

minimize f x
 g i x  = 0, i=1,... , ne

 hix  ≥ 0, i=1,. .. , n i

451 Wolfgang Bangerth

Motivation

What should we do when asked to find the (global) minimum
of functions like this:

f  x= 1
20
 x1

2x2
2cos  x1cos  x2

452 Wolfgang Bangerth

A naïve sampling approach

Naïve approach: Sample at M-by-M points and choose the
one with the smallest value.

Alternatively: Start Newton's method at each of these points to
get higher accuracy.

Problem: If we have n variables, then we would have to start
at Mn points. This becomes prohibitive for large n!

453 Wolfgang Bangerth

Monte Carlo sampling

A better strategy (“Monte Carlo” sampling):

● Start with a feasible point

● For k=0,1,2,...:
- Choose a trial point

- If then [accept the sample]

- Else:
. draw a random number s in [0,1]
. if

 then
 [accept the sample]

 else
 [reject the sample]

x0

xt

f  x t≤ f xk  xk1=x t

exp [− f  xt − f xk 

T] ≥ s

xk1=x t

xk1=xk

454 Wolfgang Bangerth

Monte Carlo sampling

Example: The first 200 sample points

455 Wolfgang Bangerth

Monte Carlo sampling

Example: The first 10,000 sample points

456 Wolfgang Bangerth

Monte Carlo sampling

Example: The first 100,000 sample points

457 Wolfgang Bangerth

Monte Carlo sampling

Example: Locations and values of the first 105 sample points

458 Wolfgang Bangerth

Monte Carlo sampling

Example: Values of the first 100,000 sample points

Note: The exact minimal value is -1.1032... . In the first
100,000 samples, we have 24 with values f(x)<-1.103.

459 Wolfgang Bangerth

Monte Carlo sampling

How to choose the constant T:

● If T is chosen too small, then the condition

will lead to frequent rejections of sample points for which
f(x) increases.
Consequently, we will get stuck in local minima for long
periods of time before we accept a sequence of steps that
gets “us over the hump”.

● On the other hand, if T is chosen too large, then we will
accept nearly every sample, irrespective of f(x

t
).

Consequently, we will perform a random walk that is no
more efficient than uniform sampling.

exp [− f  xt − f xk 

T] ≥ s , s∈U [0,1]

460 Wolfgang Bangerth

Monte Carlo sampling

Example: First 100,000 samples, T=0.1

461 Wolfgang Bangerth

Monte Carlo sampling

Example: First 100,000 samples, T=1

462 Wolfgang Bangerth

Monte Carlo sampling

Example: First 100,000 samples, T=10

463 Wolfgang Bangerth

Monte Carlo sampling

Strategy: Choose T large enough that there is a reasonable
probability to get out of local minima; but small enough that this
doesn't happen too often.

Example: For

the difference in function value between local minima and
saddle points is around 2. We want to choose T so that

is true maybe 10% of the time.

This is the case for T=0.87.

f  x= 1
20
 x1

2x2
2cos  x1cos  x2

exp [− f
T] ≥ s , s∈U [0,1]

464 Wolfgang Bangerth

Monte Carlo sampling

How to choose the next sample x
t
:

● If x
t
 is chosen independently of x

k
 then we just sample the

entire domain, without exploring areas where f(x) is small.
Consequently, we should choose x

t
 “close” to x

k
.

● If we choose x
t
 too close to x

k
 we will have a hard time

exploring a significant part of the feasible region.

● If we choose x
t
 in an area around x

k
 that is too large, then

we don't adequately explore areas where f(x) is small.

Common strategy: Choose

where σ is a fraction of the diameter of the domain or the
distance between local minima.

xt=x k y , y∈N 0, I  or U [−1,1]n

465 Wolfgang Bangerth

Monte Carlo sampling

Example: First 100,000 samples, T=1, σ=0.05

466 Wolfgang Bangerth

Monte Carlo sampling

Example: First 100,000 samples, T=1, σ=0.25

467 Wolfgang Bangerth

Monte Carlo sampling

Example: First 100,000 samples, T=1, σ=1

468 Wolfgang Bangerth

Monte Carlo sampling

Example: First 100,000 samples, T=1, σ=4

469 Wolfgang Bangerth

Monte Carlo sampling with constraints

Inequality constraints:
● For simple inequality constraints, modify sample

generation strategy to never generate infeasible trial
samples

● For complex inequality constraints, always reject samples
for which

hi x t0 for at least one i

470 Wolfgang Bangerth

Monte Carlo sampling with constraints

Inequality constraints:
● For simple inequality constraints, modify the sample

generation strategy to never generate infeasible trial
samples

● For complex inequality constraints, always reject samples:
- If then

- Else:
. draw a random number s in [0,1]
. if

 then

 else

where

Q xt ≤Q xk  xk1=x t

exp [−Q xt −Q xk

T] ≥ s

xk1=x t

xk1=xk

Q x=∞ if at least one hi  x0, Q x =f  xotherwise

471 Wolfgang Bangerth

Monte Carlo sampling with constraints

Equality constraints:
● Generate only samples that satisfy equality constraints

● If we have only linear equality constraints of the form

then one way to guarantee this is to generate samples
using

where Z is the null space matrix of A, i.e. AZ=0.

g x=Ax−b=0

xt=x k Z y , y∈ℝn−ne , y=N 0, I or U [−1,1]n−ne

472 Wolfgang Bangerth

Monte Carlo sampling

Theorem:
Let A be a subset of the feasible region. Under certain
conditions on the sample generation strategy, then as
we have

That is: Every region A will be adequately sampled over time.
Areas around the global minimum will be better sampled than
other regions.

In particular,

number of samples x k∈ A ∝ ∫A
e
−

f (x)
T dx

k∞

fraction of samples x k∈A = 1
C∫A

e
−

f (x)
T dx+ O(1

√N)

473 Wolfgang Bangerth

Monte Carlo sampling

Remark:
Monte Carlo sampling appears to be a strategy that bounces
around randomly, only taking into account the values (not the
derivatives) of f(x).

However, that is not so if sample generation strategy and T
are chosen carefully: Then we choose a new sample
moderately close to the previous one, and we always accept it
if f(x) is reduced, whereas we only sometimes accept it if f(x)
is increased by this step.

In other words: On average we still move in the direction of
steepest descent!

474 Wolfgang Bangerth

Monte Carlo sampling

Remark:
Monte Carlo sampling appears to be a strategy that bounces
around randomly, only taking into account the values (not the
derivatives) of f(x).

However, that is not so – because it compares function values.

That said: One can accelerate the Monte Carlo method by
choosing samples from a distribution that is biased towards
the negative gradient direction if the gradient is cheap to
compute.

Such methods are sometimes called Langevin samplers.

475 Wolfgang Bangerth

Simulated Annealing

Motivation:
Particles in a gas, or atoms in a crystal have an energy that is
on average in equilibrium with the rest of the system. At any
given time, however, its energy may be higher or lower.

In particular, the probability that its energy is E is

Where k
B
 is the Boltzmann constant. Likewise, probability that

a particle can overcome an energy barrier of height ΔE is

This is exactly the Monte Carlo transition probability if we
identify

PE ∝ e
−

E
kB T

PEE E ∝ min {1, e
−
 E
kB T } = {

1 if  E≤0

e
−
 E
k B T if  E0}

E = f kB

476 Wolfgang Bangerth

Simulated Annealing

Motivation:
In other words, Monte Carlo sampling is analogous to
watching particles bounce around in a potential f(x) when
driven by a gas at constant temperature.

On the other hand, we know that if we slowly reduce the
temperature of a system, it will end up in the ground state with
very high probability. For example, slowly reducing the
temperature of a melt results in a perfect crystal. (On the other
hand, reducing the temperature too quickly results in a glass.)

The Simulated Annealing algorithm uses this analogy by using
the modified transition probability

exp [− f  xt − f xk 

T k
] ≥ s , s∈U [0,1], T k0 as k∞

477 Wolfgang Bangerth

Simulated Annealing

Example: First 100,000 samples, σ=0.25

T=1 T k=
1

110−4 k

478 Wolfgang Bangerth

Simulated Annealing

Example: First 100,000 samples, σ=0.25

 24 samples with f(x)<-1.103 192 samples with f(x)<-1.103

T=1 T k=
1

110−4 k

479 Wolfgang Bangerth

Simulated Annealing

Convergence: First 1,500 samples,

(Green line indicates the lowest function value found so far)

T=1 T k=
1

10.005 k

f x =∑i=1

2 1
20

x i
2
cos x i

480 Wolfgang Bangerth

Simulated Annealing

Convergence: First 10,000 samples,

(Green line indicates the lowest function value found so far)

T=1 T k=
1

10.0005k

f x=∑
i=1

10 1
20

x i
2cos xi

481 Wolfgang Bangerth

Simulated Annealing

Discussion:
Simulated Annealing is often more efficient in finding global
minima because it initially explores the energy landscape at
large, and later on explores the areas of low energy in greater
detail.

On the other hand, there is now another knob to play with
(namely how we reduce the temperature):
● If the temperature is reduced too fast, we may get stuck in

local minima (the “glass” state)
● If the temperature is not reduced fast enough, the

algorithm is no better than Monte Carlo sampling and may
require many many samples.

482 Wolfgang Bangerth

Very Fast Simulated Annealing (VFSA)

A further refinement:
In Very Fast Simulated Annealing we not only reduce
temperature over time, but also reduce the search radius of
our sample generation strategy, i.e. we compute

and let

Like reducing the temperature, this ensures that we sample
the vicinity of minima better and better over time.

Remark: To guarantee that the algorithm can reach any point
in the search domain, we need to choose so that

xt=x kk y , y∈N 0, I  or U [−1,1]n

k0

k

∑k=0

∞

k=∞

483 Wolfgang Bangerth

Genetic Algorithms (GA)

An entirely different idea:
Choose a set (“population”) of N points (“individuals”)
P

0
={x

1
,...x

N
}

For k=0,1,2,... (“generations”):
● Copy those N

f
<N individuals in P

k
 with the smallest f(x) (i.e.

the “fittest individuals”) into P
k+1

● While #P
k+1

<N:

- select two individuals (“parents”) x
a
,x

b
 from

among the first N
f
 individuals in P

k+1
 with probabilities

 proportional to
- create a new point x

new
 from x

a
,x

b
 (“mating”)

- perform some random changes on x
new

 (“mutation”)

- add it to P
k+1

e− f x i/T

484 Wolfgang Bangerth

Genetic Algorithms (GA)

Example: Populations at k=0,1,2,5,10,20, N=500, N
s
=2/3 N

485 Wolfgang Bangerth

Genetic Algorithms (GA)

Convergence: Values of the N samples for all generations k

f x=∑
i=1

10 1
20

x i
2cos xif x=∑i=1

2 1
20

x i
2cos xi

486 Wolfgang Bangerth

Genetic Algorithms (GA)

Mating:
● Mating is meant to produce new individuals that share the

traits of the two parents
● If the variable x encodes real values, then mating could just

take the mean value of the parents:

● For more general properties (paths through cities, which of M
objects to put where in a suitcase, …) we have to encode x in
a binary string. Mating may then select bits (or bit sequences)
randomly from each of the parents

● There is a huge variety of encoding and selection strategies
in the literature.

xnew=
xaxb

2

487 Wolfgang Bangerth

Genetic Algorithms (GA)

Mutation:
● Mutations are meant to introduce an element of randomness

into the process, to explore search directions that aren't
represented yet in the population

● If the variable x represents real values, we can just add a
small random value to x to simulate mutations

● For more general properties, mutations can be introduced by
randomly flipping individual bits or bit sequences in the
encoded properties

● There is a huge variety of mutation strategies in the literature.

xnew=
xaxb

2
 y , y∈ℝ

n
, y=N 0, I 

488 Wolfgang Bangerth

Part 15

Summary of
global optimization methods

minimize f x
 g i x  = 0, i=1,... , ne

 hix  ≥ 0, i=1,. .. , n i

489 Wolfgang Bangerth

Summary of methods

● Global optimization problems with many minima are
difficult because of the curse of dimensionality: the
number of places where a minimum could be becomes
very large if the number of dimensions becomes large

● There is a large zoo of methods for these kinds of
problems

● Most algorithms are stochastic to sample feasible region

● Algorithms also work for non-smooth problems

● Most methods are not very effective (if one counts number
of function evaluations) in return for the ability to get out of
local minima

● Global optimization algorithms should never be used
whenever we know that the problem has only a small
number of minima and/or is smooth and convex

	Slide 49
	Title
	Slide 51
	Slide 52
	characterization 1
	Slide 54
	globality
	characterization 2
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	PART 1
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Sm-char
	Basic Alg
	SD 1
	SD 2
	Slide 100
	SD 3
	SD 4
	SD 5
	Slide 104
	SL 1
	Conv 1
	Conv 2
	Ex 1a
	Ex 1b
	Ex 1c
	Ex 1d
	Ex 1e
	Ex 2a
	Ex2b
	Ex 2c
	Ex 2d
	Ex 2e
	Line search 1
	Slide 119
	Line search 2
	Line search 3
	Line search 4
	Line search 5
	Line search 6
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	H indefinite 1
	H indefinite 2
	Slide 145
	H indefinite 3
	Hessian modification 1
	Hessian modification 2
	Slide 149
	Hessian modification 3
	Hessian modification 4
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	PART 2
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	PART 3
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Quadr. Penalty 3
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	SQP 2
	SQP 3
	SQP 4
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 385
	Slide 386
	Slide 387
	Slide 388
	Slide 389
	Slide 390
	Slide 391
	Slide 392
	Quadr. Penalty 1
	Slide 394
	Log Barrier 1
	Log Barrier 2
	Slide 397
	Exact Penalty 1
	Exact Penalty 2
	Slide 400
	Slide 401
	Slide 402
	Slide 403
	Slide 404
	Slide 405
	Slide 406
	Slide 407
	Slide 408
	Slide 409
	Slide 410
	Slide 411
	Slide 412
	Slide 413
	Slide 414
	Slide 415
	Slide 416
	Slide 417
	Slide 418
	Slide 419
	Slide 420
	Slide 421
	Slide 422
	Slide 423
	Slide 424
	Slide 425
	Slide 426
	Slide 427
	Slide 428
	Slide 429
	Slide 430
	Slide 431
	Slide 432
	Slide 433
	Slide 434
	Slide 435
	Slide 436
	Slide 437
	Slide 438
	Slide 439
	Slide 440
	Slide 441
	Slide 442
	Slide 443
	Slide 444
	Slide 445
	Slide 446
	Slide 447
	Slide 448
	Slide 449
	Slide 450
	Slide 451
	Slide 452
	Slide 453
	Slide 454
	Slide 455
	Slide 456
	Slide 457
	Slide 458
	Slide 459
	Slide 460
	Slide 461
	Slide 462
	Slide 463
	Slide 464
	Slide 465
	Slide 466
	Slide 467
	Slide 468
	Slide 469
	Slide 470
	Slide 471
	Slide 472
	Slide 473
	Slide 474
	Slide 475
	Slide 476
	Slide 477
	Slide 478
	Slide 479
	Slide 480
	Slide 481
	Slide 482
	Slide 483
	Slide 484
	Slide 485
	Slide 486
	Slide 487
	Slide 488
	Slide 489

