MATH 561: Numerical Analysis I

Instructor: Prof. Wolfgang Bangerth
bangerth@colostate.edu

Homework assignment 2 - due 2/14/2017

Problem 1 (LU decomposition). Solve the linear system $A x=b$ with the Hilbert matrix system we already saw in Problem 2:

$$
A=\left(\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7}
\end{array}\right), \quad b=\left(\begin{array}{c}
1 \\
2 \\
3 \\
4
\end{array}\right) .
$$

by applying the following steps with paper and pencil:

1. Compute the LU decomposition of A and write down the elimination steps.
2. Use forward and backward substitution to obtain the solution x.
(10 points)
Problem 2 (LU decomposition). Write a program that implements the LU decomposition algorithm for general $n \times n$ matrices and outputs the L and U factors. Apply it to the matrix of the linear system

$$
\left(\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right) .
$$

In a second step, implement the backward and forward substitution solves with the upper and lower triangular factors L and U for any given vector. Apply it to the right hand side above and verify that your solution is correct.
(15 points)
Problem 3 (Positive definite matrices). Positive definite matrices are those matrices for which $x^{T} A x>0$ for all vectors $x \neq 0$. These matrices play an important role in many applications of engineering and physics. Let us consider one of their properties.

Any matrix A can be written as $A=A^{s}+A^{a}$, where the symmetric part A^{s} and the skew-symmetric part A^{a} of a matrix are defined as

$$
A^{s}=\frac{A+A^{T}}{2}, \quad A^{a}=\frac{A-A^{T}}{2} .
$$

Prove that if A is positive definite then A^{s} is positive definite, and vice versa.
(5 points)

Problem 4 (Norms on \mathbb{R}^{n}). In the analysis of iterative solution methods for linear systems, we often come across different vector norms. A functional $\|\cdot\|: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called a norm if it satisfies the following three conditions:

1. $\|x\| \geq 0$ for all vectors $x \in \mathbb{R}^{n}$ and $\|x\|=0$ if and only if $x=0$ (positive definiteness);
2. $\|\lambda x\|=|\lambda|\|x\|$ for all $\lambda \in \mathbb{R}$ and all vectors $x \in \mathbb{R}^{n}$ (scalability);
3. $\|x+y\| \leq\|x\|+\|y\|$ for all vectors $x, y \in \mathbb{R}^{n}$ (triangle inequality).

Determine which of the following are norms on \mathbb{R}^{n} by proving or disproving that they satisfy the three conditions above:
a) $\max _{1 \leq i \leq n}\left|x_{i}\right|$
b) $\max _{2 \leq i \leq n}\left|x_{i}\right|$
c) $\sum_{i=1}^{n}\left|x_{i}\right|^{3}$
d) $\left(\sum_{i=1}^{n}\left|x_{i}\right|^{1 / 2}\right)^{2}$
e) $\max \left\{\left|x_{1}-x_{2}\right|,\left|x_{1}+x_{2}\right|,\left|x_{3}\right|,\left|x_{4}\right|, \ldots,\left|x_{n}\right|\right\}$
f) $\sum_{i=1}^{n} 2^{-i}\left|x_{i}\right|$
(12 points)
Problem 5 (Equivalence of norms on \mathbb{R}^{n}). In class, we proved the equivalence of the norms $\|\cdot\|_{\infty}$ and $\|\cdot\|_{2}$. Here now, you are asked to prove the same for $\|\cdot\|_{\infty}$ and $\|\cdot\|_{1}$.
a) Prove that there are indeed constants c, C such that

$$
c\|v\|_{\infty} \leq\|v\|_{1} \leq C\|v\|_{\infty}
$$

where

$$
\begin{aligned}
\|v\|_{1} & =\sum_{i}\left|v_{i}\right| \\
\|v\|_{\infty} & =\max _{i}\left|v_{i}\right|
\end{aligned}
$$

and where v is an n-dimensional vector in \mathbb{R}^{n}.
b) For vectors v_{1}, v_{2} with $\left\|v_{1}\right\|_{1} \leq\left\|v_{2}\right\|_{1}$, does the result of part a) imply that $\left\|v_{1}\right\|_{\infty} \leq\left\|v_{2}\right\|_{\infty}$? If not, give an example of vectors for which this does not follow.
(8 points)
Problem 6 (Alternative vector norms). Let A be a symmetric and positive definite $n \times n$ matrix. Show that

$$
\|x\|_{A}=\sqrt{x^{T} A x}
$$

is a norm for vectors $x \in \mathbb{R}^{n}$. (Hint: Use the eigenvalue and eigenvector decomposition of symmetric positive definite matrices.)

Problem 7 (Jacobi iteration). Let A, b be the 100×100 matrix and 100dimensional vector defined by

$$
A_{i j}=\left\{\begin{array}{ll}
2.01 & \text { if } i=j, \\
-1 & \text { if } i=j \pm 1, \\
0 & \text { otherwise }
\end{array} \quad b_{i}=\frac{1}{100} \sin \left(\frac{2 \pi i}{50}\right)\right.
$$

Apply Jacobi's method to solving $A x=b$. Write a program that implements the Jacobi method and start with a vector x_{0} with randomly chosen elements in the range $-1 \leq\left(x_{0}\right)_{i} \leq 1$ (i.e. with elements generated from what the rand() function or a similar replacement returns).
(Hint: It is not necessary to actually store the complete matrix just to multiply with it. Rather, use that the i-th component of the vector $A y$ is $(A y)_{i}=\sum_{j=1}^{n} A_{i j} y_{j}=2.01 y_{i}-y_{i-1}-y_{i+1}$ at least for $2 \leq i \leq n-1$, and obvious modifications for $j=1$ and $j=n$.)

Run 200 Jacobi iterations and plot the values of $\left(x^{(k)}\right)_{i}$ against i for every few iterations, for example $k=0,2,5,10,20,50,100,200$. What do you observe?
(20 points)

Problem 8 (Gauss-Seidel iteration). Repeat the previous problem, but use the Gauss-Seidel iteration instead to compute the vectors $x^{(k)}$. Generate the same plots as before. Compare your results with the previous results.
(20 points)

