
MATH 561: Numerical Analysis I
Instructor: Prof. Wolfgang Bangerth

bangerth@colostate.edu

Homework assignment 1 – due 1/31/2017

Problem 1 (Continuous vs. discrete). Functions f(x) are usually defined
over an entire domain x ∈ I = (a, b) ⊂ R and – if interesting – take values in
an image f(I) ⊂ R. The domain and, typically also the image, are sets with
infinitely many elements. On the other hand, computers can only represent
numbers using a finite number of bits, most often as 32-bit (float, or REAL*4)
or 64-bit (double, or REAL*8) IEEE floating point numbers, which store numbers
in the form ±m2e, where 0 ≤ m < 1 is the mantissa

m = b12−1 + b22−2 + b32−3 + · · ·+ bM2−M (1)

and e is the exponent and has the form

e = ±(u020 + u121 + u222 + u323 + · · ·+ uE2E). (2)

The coefficients bi, ui are single-bit numbers, i.e., either 0 or 1. In the bi-
nary system, floating point numbers can therefore be written as ±0.b1b2b3 . . .×
2±uEuE−1uE−2...u0 . The total number of bits needed for the representation are
M bits for the mantissa, E + 1 bits for the exponent, and 2 bits for the two
signs.

Obviously, not all elements of I and f(I) can be represented. Write a short
program to find

a) an approximation to the smallest and largest positive numbers that can
be represented in float and double precision;

b) a reasonably close approximation to the smallest float and double float-
ing point number you can add to 1 such that the result is different from
1.

c) In exact arithmetic, the system of linear equations

x1 + x2 = 2,

x1 + 1020x2 = 1 + 1020

has the solution x1 = x2 = 1. Are there corresponding (double precision)
floating point numbers for x1, x2 that when plugged into the left hand
side of the equations yields the exact values on the right hand side? If so,
which? If not, is this a problem?

(20 points)

1

Problem 2 (Floating point vs real numbers). Let ε be the smallest
floating point number in double precision such that in computer arithmetic
1 + ε 6= 1 (you determined ε in Problem 1b). What are the floating point values
of (1 + ε

2) − 1, 1 + (ε
2 − 1), and (1 − 1) + ε

2? In what important way do exact
and floating point arithmetic therefore differ? (10 points)

Problem 3 (Associativity of addition). In exact arithmetic, the partial
sums

SN =
N∑

k=1

1
k

diverge as N →∞. Write a program that keeps adding 1/k in single precision
arithmetic (float, REAL*4) until the sum stays exactly the same. How can this
happen?

As a second exercise, consider the following reformulation of the problem:
in exact arithmetic, the order in which we add up the numbers 1/k does not
matter. Check what happens if your program computes the partial sums in
groups of 10 terms at a time as follows:

S10N =
N−1∑
j=0

(
10∑

k=1

1
10j + k

)

where the terms in parentheses are added up first, before they are added to the
global sum. Perform the outer summation until the value of the sum does not
change anymore. Compare the result to what you got previously. Explain.

(15 points)

Problem 4 (Taylor series). Derive the first four terms and integral remain-
der term of the Taylor series of

a) f(x) = sinx when expanded around x0 = 0;

b) f(x) = x sinx when expanded around x0 = π/2;

c) f(x) = 4(x− 3)2(x+ 2) when expanded around x0 = 1. What happened
to the remainder term and what does this mean for the accuracy of the
Taylor expansion with only four terms?

d) f(x) = xx when expanded around x0 = 1. (Note: You will first have to
figure out how to differentiate f(x). Use the identity ab = eb ln a.)

You may use a computer algebra system like Maple to compute derivatives of
f(x), but not to generate the entire Taylor series. (10 points)

2

Problem 5 (Taylor series). Many important functions such as the sine can-
not be computed in a simple way, i.e. with only the four basic operations plus,
minus, multiplication and division. However, they can be approximated with
these operations.

a) Graph the first eight Taylor approximations of f(x) = sinx over the in-
terval [0, 2π] when expanded around zero, i.e.

f1(x) = f(0) + f ′(0)x,

f2(x) = f(0) + f ′(0)x+ 1
2f
′′(0)x2,

f3(x) = f(0) + f ′(0)x+ 1
2f
′′(0)x2 + 1

3!f
′′′(0)x3,

etc. What do you observe? What does this mean for the approximation
of f(2π)?

b) How large is the maximal error (i.e., the maximum of the difference be-
tween fk(x) and f(x) = sinx) of each of the approximations above on the
interval [0, 2π].

c) Write a program to experimentally determine the number of terms you
need to approximate f(2π) = 0 to an accuracy of 10−4 and 10−12.

(15 points)

Problem 6 (Gaussian elimination). Solve (on paper, showing the individ-
ual steps) the following system of linear equations using Gaussian elimination:

1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7



x1

x2

x3

x4

 =


1
2
3
4

 .

Verify that your result is correct.
(The matrix in this example is the so-called Hilbert matrix, with entries

Hij = 1
i+j−1 . It has a number of nasty properties that make it a good testcase

for matrix algorithms, see http://en.wikipedia.org/wiki/Hilbert_matrix.)
(10 points)

Problem 7 (Gaussian elimination for matrix inversion). Write a com-
puter function that takes a general n × n matrix A as input and computes its
inverse A−1 as output. Implement the algorithm by hand, i.e., you shouldn’t
just call the Matlab function that computes the inverse.

Apply this function to compute, numerically, the inverse of the matrix of the
previous problem. Do the same for Hilbert matrices of sizes 10× 10, 100× 100
and 200 × 200. In each case, verify numerically that AA−1 = I where I is the
identity matrix. What do you observe? (15 points)

3

http://en.wikipedia.org/wiki/Hilbert_matrix

Problem 8 (Gaussian elimination). Using Gaussian elimination, it is sim-
ple to solve the following problem1 0 0

1 1 0
0 0 1

x1

x2

x3

 =

1
2
3

 .

One would eliminate the occurrence of x1 in the second equation by subtracting
the first from the second equation, arriving at a diagonal matrix.

Describe what happens if the system instead looked like this:0 0 1
1 0 0
1 1 0

x1

x2

x3

 =

3
1
2

 .

This is of course the same system as before, we have just rotated the order of
the three equations. Does the algorithm still work? If not, propose a remedy.

(5 points)

4

