
MATH 651: Numerical Analysis II
Instructor: Prof. Wolfgang Bangerth

bangerth@colostate.edu

Homework assignment 5 – due 11/27/2017

Problem 1 (Convergence order of ODE solvers). The following two schemes for the approximation
of the ODE x′(t) = f(t, x(t)) are both Runge-Kutta methods based on the midpoint rule:

• The explicit Runge-Kutta-2 method:

F1 = ∆t f(tk, xk)

F2 = ∆t f

(
tk +

1

2
∆t, xk +

1

2
F1

)
xk+1 = xk + F2.

• The implicit midpoint rule, which can be written as an implicit 1-stage Runge-Lutta method:

F1 = ∆t f

(
tk +

1

2
∆t, xk +

1

2
F1

)
xk+1 = xk + F1.

You can probably guess the convergence order for both of these methods. Prove it rigorously.
(30 points)

Problem 2 (A quantitative comparison of Runge-Kutta methods). For any 0 < α ≤ 1, the Butcher
tableau

0
α α(

1− 1
2α

)
1
2α

defines a family of 2-stage, explicit Runge-Kutta methods that are all of second order. For α = 1
2 , you will

recover the explicit Runge-Kutta-2 method of the previous problem. For α = 1 you get Heun’s method,
which is like an explicit variation of the Crank-Nicolson scheme.

All members of this family are explicit and have the same order, so it seems reasonable to ask which α
is best. Let us explore this experimentally.

a) Using the equation x′(t) = x(t), x(0) = 1, determine experimentally the accuracy of methods defined
by different values of α by plotting the error in approximating x(1) = e for ∆t = 1

2 ,
1
4 ,

1
8 , . . .

1
512 . For

which α is the error minimal? (In other words, for which α is the method best with regards to the
error?)

b) All methods of this family being explicit, they can at best be conditionally stable. Using the equation
x′(t) = −x(t), x(0) = 1, determine experimentally how large you can choose the time step to still
obtain a “stable” scheme? For which α is the maximal stable time step maximal? (In other words, for
which α is the method best with regards to the maximal allowed time step?)

(Note: If you want to, you can do the proof for the first part of Problem 1 above for the general method
shown here, rather than for the specific case with α = 1

2 . This will yield a remainder term (i.e., the first
Taylor term that does not vanish) that contains α, and you can think about what α would minimize this
term.) (30 points)

1

Problem 3 (N-body simulations). Globular clusters are dense collections of stars that rotate around a
common center of mass – a bit like galaxies, just at a smaller scale, and without the large-scale organization
where all stars move in roughly the same circular direction. An example of such a cluster is shown on the right.

The Messier M80 globular star
cluster. (Source: Wikipedia.)

The motion of these stars can be described by letting each star feel the
gravitational force of all other stars. Each star’s position xi, i = 1, . . . , Ns,
then satisfies the following ODE:

mix
′′
i (t) =

N∑
j=1,j 6=i

Gmimj

|xi − xj |2
xi − xj
|xi − xj |

,

where the mi are the masses of the stars, and G = 6.674 · 1011 m3

kg s2 is the
gravity constant.

Let us try to simulate the dynamics of such a cluster. To this end,
assume that all of the stars have one solar mass, i.e., mi = 1.989 · 1030kg.
Furthermore, assume that the stars’ initial positions are random – each
component k = 1, 2, 3 of each initial position xi,0 is drawn from a Gaussian
distribution: xi,0,k = N(0, σx) where σx = 50 light years = 50 · 9.4607 ·
1015m.

We then also need to provide initial conditions. This could be obtained
from the virial theorem, but we’ll make our lives easier by just assuming
x′i,0,k = N(0, σv) where σv = 5 m

s

√
Ns and Ns is the number of stars you consider (because the more stars

you have, the larger the gravitational force and consequently the larger the average speed of stars).
Write a code that can simulate a star cluster with Ns stars that is set up this way. Start with Ns = 2

and verify that the two stars orbit each other on elliptic orbits. (If they don’t, then decrease their velocities
until they are slow enough to be gravitationally bound.) Think about how large or small you have to make
the time step. Visualize these orbits for at least 106 years (i.e., roughly 3.15 · 1013s).

Then repeat this exercise for larger and larger number of stars. How many stars can you simulate up to
at least 106 years with your code? Discuss what the limiting factor for your simulations is! (40 points)

Problem 4 (A modeling challenge). This problem is meant as a bonus question. If you feel bored
sitting around the table with your family during Thanksgiving, do what mathematicians typically do on such
occasions: scribble solution attempts to questions like this on napkins or the back of envelopes. The problem
has two parts: a theoretical part that you can do on the napkin (avoid the linen napkins handed down for
generations!), and a practical part where you have to implement your model on a computer. In order to
comply with rules on animal experiments, we discourage experimental verification of the model. It won’t
work with a broiled turkey anyway.

Here’s the theoretical problem: Thanksgiving turkeys aren’t particularly good at flying. They may try,
but they don’t really get into the air very gracefully and for extended periods of time. Derive an ODE
model for turkey flight that takes into account the following rules (all quantities have units meter, meter per
second, etc, as appropriate):

a) the turkey is initially at rest;

b) it then runs horizontally, accelerating at a modest rate of 1.5;

c) when it reaches the lift-off speed of v = 8 it gets airborne; from thereon, its vertical (upward) accelera-
tion is −4 + v (in other words, the initial upward acceleration after getting airborne is 4); at the same
time, air friction reduces the horizontal velocity by a deceleration of −v2/10;

d) at some point, the turkey’s speed will become too slow to sustain flight, its vertical velocity will become
negative, and it will eventually fall back to earth.

2

https://en.wikipedia.org/wiki/Virial_theorem

To write an ODE model for this, you will have to use the
following variables: x(t)–horizontal distance from the starting
point; v(t)–horizontal velocity; h(t)–height above ground; u(t)–
vertical velocity.

Practical part: Solve these equations from the turkey’s start
until where it falls back down to earth. Plot x(t) and h(t)
in a single plot to show the turkey’s trajectory. If you feel
challenged, compute the length of the flight in both seconds
and meters.

Hint: A plot of x(t) vs. h(t) (i.e. the turkey’s
trajectory) would look like the in the figure on the
right.

(10 bonus points)

Happy Thanksgiving!

3

