
MATH 651: Numerical Analysis II
Instructor: Prof. Wolfgang Bangerth

bangerth@colostate.edu

Homework assignment 3 – due 10/24/2017

Problem 1 (Numerical differentiation). We proved in class that the symmetric two-point finite differ-
ence operator

D±ε f(x0) =
f(x0 + ε)− f(x0 − ε)

2ε

converges to the exact derivative f ′(x0) like

|f ′(x0)−D±ε f(x0)| ≤ Cε2

as ε→ 0.
One may ask if it is possible to get better convergence orders if one is willing to use more function

evaluations. For example, one could postulate an operator

D[α−1,α0,α1]
ε f(x0) =

α−1f(x0 − ε) + α0f(x0) + α1f(x0 + ε)

βε

and then hope that one can choose α−1, α0, α1 and β in such a way that

|f ′(x0)−D[α−1,α0,α1]
ε f(x0)| ≤ Cε3

as ε→ 0, or possibly of even higher order.

(a) Relatively simple considerations show that D
[α−1,α0,α1]
ε can only be a reasonable operator if α−1 +α0 +

α1 = 0 and −α−1 + α1 = β. Show why these equations have to hold by considering what happens if
you apply the operator to a function f that is (i) constant, and (ii) linear.

(b) Having so reduced the number of unknowns to two (for example α±1), see if you can choose these
leftover unknowns so that you get at least third order convergence. To this end, you will have to do
Taylor expansions as we did in class and see whether you can choose the unknowns in such a way
that as many Taylor terms as possible cancel. Alternatively, you could ask that the operator is exact
when applied to functions that are constant, linear, quadratic, ..., until you have enough equations to
determine all coefficients. You may assume that f ∈ C∞.

(c) Repeat this kind of exercise for a finite difference operator

D[α−2,α−1,α0,α1,α2]
ε f(x0) =

α−2f(x0 − 2ε) + α−1f(x0 − ε) + α0f(x0) + α1f(x0 + ε) + α2f(x0 + 2ε)

βε

and see what kind of convergence order you can achieve by choosing the coefficients in appropriate
ways.

(d) Using the function f(x) = ex and x0 = 0, demonstrate numerically that the theoretical convergence
order you have derived above indeed holds for both the three-point and the five-point stencil in practice
as well.

(30 points)
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Problem 2 (Numerical differentiation). As part of the previous homework assignment, you have found
a root of the function f(x) = xex − 1. (As a complete aside, this means that you computed W (1) where
W (x) is the Lambert W function.)

Let us repeat a similar exercise except that we now want to find the minimum of that function. To this
end, we need to solve the problem g(x) = f ′(x) = 0 for which we can use a Newton method that computes

xk+1 = xk − g(xk

g′(xk)
. Here, this equates to iterating xk+1 = xk − f ′(xk

f ′′(xk)
.

(a) Use Newton’s method to compute the root x∗ to at least six digits of accuracy, starting with x0 = −0.5
and using exact derivatives of f .

(b) Let us pretend that f(x) was an expensive function for which we do not have a formula, and that
we can only compute f ′ and f ′′ in Newton’s method by a finite difference approximation using the
symmetric first and second derivative operators. Using these, compute approximate roots xε,∗ for a
variety of values ε to at least six digits of accuracy. Demonstrate numerically that xε,∗ → x∗ as ε→ 0
and plot the error |xε,∗ − x∗| as a function of ε for a number of values ε = 1, . . . , 10−6.

(30 points)

Problem 3 (Numerical integration). Let’s go back to the function f(x) = sin 1
x and assume that we

want to compute the integral J =
∫ 1

0.05
f(x) dx. The value of the integral is about 0.50283962, but you

should find a numerical approximation to it.

(a) Using a subdivision of the interval [0.05, 1] into K equally sized intervals Ik, approximate the integral
above using the

(i) midpoint rule,

(ii) trapezoidal rule,

(iii) Simpson rule,

(iv) 2-point Gauss rule,

(v) 3-point Gauss rule.

For each of these methods, generate a plot that shows the error between the exact integral value and
your numerical approximation as a function of the number of function evaluations you need. (The
number of function evaluations will be K, K + 1, 2K + 1, 2K, and 3K for the methods above.)

For each of the methods, also state how many function evaluations you need to achieve an accuracy of
10−6.

(b) In the derivation of the convergence rates for the various methods, always came to a point where we
could state the error as

|e| ≤
K∑
k=1

1

p!
‖f (p)‖∞,Ikh

p+1
k .

Here, p is the convergence order of the respective method. (Remember that we lose one power of h in
the summation, to obtain |e| = O(h) if the hk are all roughly of the same size.)

This representation of the total suggests a strategy like the one we explored for interpolation: To
choose intervals so that hk is only small if f (p) is large. To this end, we should start with a relatively
coarse mesh and then for each interval compute some sort of criterion ηk that indicates how large the
error is – for example

ηk =
1

p!

∣∣∣∣f (p)(xk − xk−12

)∣∣∣∣hp+1
k ,
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where (i) we assume that we can evaluate derivatives of f exactly, and (ii) we approximate the ∞-
norm of the derivative by just evaluating it at the midpoint of the interval. We would then “refine” the
interval with the largest ηk by replacing it with its two halves, recompute our current approximation
of the interval, and repeat the process.

Try this strategy with the trapezoidal rule. In each iteration of the algorithm, evaluate the error
between the numerical approximation of the integral and the exact value. Produce a plot that shows
the error as a function of the number of function evaluations you need and compare the results with
the data obtained in part (a).

How many function evaluations do you now need to achieve an accuracy of 10−6?

(40 points)
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