## Part 1

## Examples of optimization problems

## What is an optimization problem?

## Mathematically speaking:

Let $X$ be a Banach space; let
$f: X \rightarrow R \cup\{+\infty\}$
$g: X \rightarrow R^{\text {ne }}$
$h: X \rightarrow R^{n i}$
be functions on $X$, find $x \in X$ so that

$$
\begin{aligned}
& f(x) \rightarrow \min ! \\
& g(x)=0 \\
& h(x) \geq 0
\end{aligned}
$$

Questions: Under what conditions on $X, f, g, h$ can we guarantee that (i) there is a solution; (ii) the solution is unique; (iii) the solution is stable.

## What is an optimization problem?

## In practice:

- $x=\{u, y\}$ is a set of design and auxiliary variables that completely describe a physical, chemical, economical model;
- $f(x)$ is an objective function with which we measure how good a design is;
- $g(x)$ describes relationships that have to be met exactly (for example the relationship between $y$ and $u$ )
- $h(x)$ describes conditions that must not be exceeded

Then find me that $x$ for which

$$
\begin{aligned}
& f(x) \rightarrow \min ! \\
& g(x)=0 \\
& h(x) \geq 0
\end{aligned}
$$

Question: How do I find this $x$ ?

## What is an optimization problem?

Optimization problems are often subdivided into classes:

Linear vs. Nonlinear<br>Convex vs. Nonconvex<br>Unconstrained vs. Constrained<br>Smooth vs. Nonsmooth<br>With derivatives vs. Derivativefree<br>Continuous vs. Discrete<br>Algebraic vs. ODE/PDE

Depending on which class an actual problem falls into, there are different classes of algorithms.

## Examples



Linear and nonlinear functions $f(x)$ on a domain bounded by linear inequalities

## Examples



Strictly convex, convex, and nonconvex functions $f(x)$

## Examples



Another non-convex function with many (local) optima. We may want to find the one global optimum.

## Examples



Optima in the presence of (nonsmooth) constraints.

## Examples



Smooth and non-smooth nonlinear functions.

## Applications: The drag coefficient of a car



## Mathematical description:

$x=\{u, y\}: \quad u$ are the design parameters (e.g. the shape of the car) $y$ is the flow field around the car
$f(x)$ : the drag force that results from the flow field
$g(x)=y-q(u)=0$ :
constraints that come from the fact that there is a flow field $y=q(u)$ for each design. $y$ may, for example, satisfy the Navier-Stokes equations

## Applications: The drag coefficient of a car

## Inequality constraints:

(expected sales price - profit margin) $-\operatorname{cost}(u) \geq 0$

volume $(u)$ - volume(me, my wife, and her bags) $\geq 0$

material stiffness * safety factor

- max(forces exerted by $y$ on the frame) $\geq 0$
legal margins $(u) \geq 0$


## Applications: The drag coefficient of a car

Analysis:
linearity:
$f(x)$ may be linear
$g(x)$ is certainly nonlinear (Navier-Stokes equations) $h(x)$ may be nonlinear
convexity: ??
constrained: yes
smooth: $\quad f(x)$ yes
$g(x)$ yes
$h(x)$ some yes, some no
derivatives: available, but probably hard to compute in practice
continuous: yes, not discrete
ODE/PDE: yes, not just algebraic

## Applications: The drag coefficient of a car

## Remark:

In the formulation as shown, the objective function was of the form

$$
f(x)=c_{d}(y)
$$

In practice, one often is willing to trade efficiency for cost, i.e. we are willing to accept a slightly higher drag coefficient if the cost is smaller. This leads to objective functions of the form

$$
f(x)=c_{d}(y)+a \operatorname{cost}(u)
$$

or

$$
f(x)=c_{d}(y)+a[\operatorname{cost}(u)]^{2}
$$

## Applications: Optimal oil production strategies

Permeability field


Oil saturation


Mathematical description:
$x=\{u, y\}: \quad u$ are the pumping rates at injection/production wells $y$ is the flow field (pressures/velocities)
$f(x)$ : the cost of production and injection minus sales price of oil integrated over lifetime of reservoir (or -NPV)
$g(x)=y-q(u)=0$ :
constraints that come from the fact that there is a flow field $y=q(u)$ for each $u$. $y$ may, for example, satisfy

## Applications: Optimal oil production strategies

Inequality constraints $h(x) \geq 0$ :

$$
\begin{aligned}
& \left.U_{i \max }-u_{i} \geq 0 \quad \text { (for all wells } i\right): \\
& \text { Pumps have a maximal pumping rate/pressure }
\end{aligned}
$$

produced_oil(T)/available_oil(0) - $c \geq 0$ :
Legislative requirement to produce at least a certain fraction
$c$ - water_cut $(t) \geq 0 \quad$ (for all times $t$ ):
It is inefficient to produce too much water
pressure $-d \geq 0 \quad$ (for all times and locations):
Keeps the reservoir from collapsing

## Applications: Optimal oil production strategies

## Analysis:

linearity: $\quad f(x)$ is nonlinear
$g(x)$ is certainly nonlinear
$h(x)$ may be nonlinear
convexity: no
constrained: yes
smooth: $\quad f(x)$ yes
$g(x)$ yes
$h(x)$ yes
derivatives: available, but probably hard to compute in practice
continuous: yes, not discrete
ODE/PDE: yes, not just algebraic

## Applications: Switching lights at an intersection



## Mathematical description:

$x=\left\{T, t_{i}^{1}, t_{i}^{2}\right\}$ : round-trip time $T$ for the stop light system, switch-green and switch-red times for all lights $i$
$f(x): \quad$ number of cars that can pass the intersection per hour;
Note: unknown as a function, but we can measure it

## Applications: Switching lights at an intersection

Inequality constraints $h(x) \geq 0$ :
$300-\mathrm{T} \geq 0$ :
No more than 5 minutes of round-trip time, so that people don't have to wait for too long

$$
\mathrm{t}_{2 i}-t_{1 i}-5 \geq 0 \quad \text { (for all lights } i \text { ): }
$$

At least 5 seconds of green for everyone
$\mathrm{t}_{1(i+1)}-t_{2 i}-5 \geq 0$ :
At least 5 seconds of all-red between different greens

## Applications: Switching lights at an intersection

## Analysis:

linearity:
$f(x)$ ??
$h(x)$ is linear
convexity:
constrained: yes
smooth:
$f(x)$ ??
$h(x)$ yes
derivatives: not available
continuous: yes, not discrete
ODE/PDE: no

## Applications: Trajectory planning



CASSINI - SATURN ORBITAL SAMPLE TOUR


## Mathematical description:

$x=\{y(t), u(t)\}$ : position of spacecraft and thrust vector at time $t$
$f(x)=\int_{0}^{T}|u(t)| d t$ minimize fuel consumption
$m \ddot{y}(t)-u(t)=0 \quad$ Newton's law
$|y(t)|-d_{0} \geq 0 \quad$ Do not get too close to the sun
$u_{\text {max }}-|u(t)| \geq 0 \quad$ Only limited thrust available

## Applications: Trajectory planning

## Analysis:

linearity: $\quad f(x)$ is nonlinear<br>$g(x)$ is linear<br>$h(x)$ is nonlinear

convexity: no
constrained: yes
smooth: yes, here
derivatives: computable
continuous: yes, not discrete
ODE/PDE: yes
Note: Trajectory planning problems are often called optimal control.

## Applications: Data fitting 1



Mathematical description:
$x=\{a, b\}: \quad$ parameters for the model $\quad y(t)=\frac{1}{a} \log \cosh (\sqrt{a b} t)$ $f(x)=1 / N \sum_{i}\left|y_{i}-y(t)\right|^{2}:$
mean square difference between predicted value and actual measurement

## Applications: Data fitting 1

## Analysis:

linearity: $\quad f(x)$ is nonlinear
convexity: ?? (probably yes)
constrained: no
smooth: yes
derivatives: available, and easy to compute in practice
continuous: yes, not discrete
ODE/PDE: no, algebraic

## Applications: Data fitting 2



Mathematical description:
$x=\{a, b\}: \quad$ parameters for the model $\quad y(t)=a t+b$
$f(x)=1 / N \sum_{i}\left|y_{i}-y(t)\right|^{2}:$
mean square difference between predicted value and actual measurement

## Applications: Data fitting 2

## Analysis:

linearity: $\quad f(x)$ is quadratic
Convexity: yes
constrained: no
smooth: yes
derivatives: available, and easy to compute in practice
continuous: yes, not discrete
ODE/PDE: no, algebraic
Note: Quadratic optimization problems (even with linear constraints) are easy to solve!

## Applications: Data fitting 3



Mathematical description:
$x=\{a, b\}: \quad$ parameters for the model $y(t)=a t+b$
$f(x)=1 / N \sum_{i}\left|y_{i}-y(t)\right|:$
mean absolute difference between predicted value and actual measurement

## Applications: Data fitting 3

## Analysis:

 linearity: $\quad f(x)$ is nonlinearConvexity: yes
constrained: no
smooth: no!
derivatives: not differentiable
continuous: yes, not discrete
ODE/PDE: no, algebraic
Note: Non-smooth problems are really hard to solve!

## Applications: Data fitting 3, revisited



Mathematical description:
$x=\left\{a, b, s_{i}\right\}: \quad$ parameters for the model $\quad y(t)=a t+b$ "slack" variables $s_{i}$
$f(x)=1 / N \sum_{i} s_{i} \rightarrow \min !$
$s_{i}-\left|y_{i}-y(t)\right| \geq 0$

## Applications: Data fitting 3, revisited

## Analysis:

 linearity: $\quad f(x)$ is linear, $h(x)$ is not linearConvexity: yes
constrained: yes
smooth: no!
derivatives: not differentiable
continuous: yes, not discrete
ODE/PDE: no, algebraic
Note: Non-smooth problems are really hard to solve!

## Applications: Data fitting 3, re-revisited



Mathematical description:
$x=\left\{a, b, s_{j}\right\}: \quad$ parameters for the model $y(t)=a t+b$ "slack" variables $s_{i}$
$f(x)=1 / N \sum_{i} s_{i} \rightarrow \min !$

$$
\begin{array}{ll}
s_{i}-\left|y_{i}-y(t)\right| \geq \theta & s_{i}-\left(y_{i}-y\left(t_{i}\right)\right) \geq 0 \\
& s_{i}+\left(y_{i}-y\left(t_{i}\right)\right) \geq 0
\end{array}
$$

## Applications: Data fitting 3, re-revisited

## Analysis:

linearity: $\quad f(x)$ is linear, $h(x)$ is now also linear
Convexity: yes
constrained: yes
smooth: yes
derivatives: yes
continuous: yes, not discrete
ODE/PDE: no, algebraic
Note: Linear problems with linear constraints are simple to solve!

## Applications: Traveling salesman



Task: Find the shortest tour through $N$ cities with mutual distances $d_{i j}$.
(Here: the 15 biggest cities of Germany; there are 43,589,145,600 possible tours through all these cities.)

## Mathematical description:

$x=\left\{c_{i}\right\}:$
the index of the $i$ th city on our trip, $i=1 \ldots N$
$f(x)=\quad \sum_{i} d_{c_{i} c_{i+1}}$
$c_{i} \neq c_{j}$ for $i \neq j \quad$ no city is visited twice (alternatively: $\quad c_{i} c_{j} \geq 1$ )

## Applications: Traveling salesman

## Analysis:

 linearity: $\quad f(x)$ is linear, $h(x)$ is nonlinearConvexity: meaningless constrained: yes
smooth: meaningless
derivatives: meaningless
continuous: discrete: $x \in X \subset\{1,2, \ldots, N\}^{N}$
ODE/PDE: no, algebraic
Note: Integer problems (combinatorial problems) are often exceedingly complicated to solve!

## Part 2

## Minima, minimizers, sufficient and necessary conditions

## Part 3

## Metrics of algorithmic complexity

## Outline of optimization algorithms

All algorithms to find minima of $f(x)$ do so iteratively:

- start at a point $x_{0}$
- for $k=1,2, \ldots$, :
. compute an update direction $p_{k}$
. compute a step length $\alpha_{k}$
. set $\quad x_{k} \leftarrow x_{k-1}+\alpha_{k} p_{k}$
. set $k \leftarrow k+1$



## Outline of optimization algorithms

All algorithms to find minima of $f(x)$ do so iteratively:

- start at a point $x_{0}$
- for $k=1,2, \ldots$, :
. compute an update direction $p_{k}$
. compute a step length $\alpha_{k}$
. set $\quad x_{k} \leftarrow x_{k-1}+\alpha_{k} p_{k}$
. set $k \leftarrow k+1$


## Questions:

- If $x^{*}$ is the minimizer that we are seeking, does $x_{k} \rightarrow x^{*}$ ?
- How many iterations does it take for $\left\|x_{k}-x^{*}\right\| \leq \epsilon \quad$ ?
- How expensive is every iteration?


## How expensive is every iteration?

The cost of optimization algorithms is dominated by evaluating $f(x), g(x), h(x)$ and derivatives:

- Traffic light example: Evaluating $f(x)$ requires us to sit at an intersection for an hour, counting cars
- Designing air foils: Testing an improved wing design in a wind tunnel costs millions of dollars.


## How expensive is every iteration?

Example: Boeing wing design


Boeing 767 (1980s) 50+ wing designs tested in wind tunnel


Boeing 777 (1990s) 18 wing designs tested in wind tunnel


Boeing 787 (2000s)
10 wing designs tested in wind tunnel

Planes today are 30\% more efficient than those developed in the 1970s. Optimization in the wind tunnel and in silico made that happen but is very expensive.

## How expensive is every iteration?

## Practical algorithms:

To determine the search direction $p_{k}$

- Gradient (steepest descent) method requires 1 evaluation of $\nabla f(\cdot)$ per iteration
- Newton's method requires 1 evaluation of $\nabla f(\cdot)$ and 1 evaluation of $\nabla^{2} f(\cdot)$ per iteration
- If derivatives can not be computed exactly, they can be approximated by several evaluations of $f(\cdot)$ and $\nabla f(\cdot)$

To determine the step length $\alpha_{k}$

- Both gradient and Newton method typically require several evaluations of $f(\cdot)$ and potentially $\nabla f(\cdot)$ per iteration.


## How many iterations do we need?

Question: Given a sequence $\quad x_{k} \rightarrow x^{*} \quad$ (for which we know that $\left\|x_{k}-x^{*}\right\| \rightarrow 0$ ), can we determine exactly how fast the error goes to zero?


## How many iterations do we need?

Definition: We say that a sequence $x_{k} \rightarrow x^{*}$ is of order $s$ if

$$
\left\|x_{k}-x^{*}\right\| \leq C\left\|x_{k-1}-x^{*}\right\|^{s}
$$

A sequence of numbers $a_{k} \rightarrow 0$ is called of order $s$ if

$$
\left|a_{k}\right| \leq C\left|a_{k-1}\right|^{s}
$$

$C$ is called the asymptotic constant. We call $C\left|a_{k-1}\right|^{s-1}$ gain factor.

## Specifically:

If $s=1$, the sequence is called linearly convergent. Note: Convergence requires $C<1$. In a singly logarithmic plot, linearly convergent sequences are straight lines.

If $s=2$, we call the sequence quadratically convergent.
If $1<s<2$, we call the sequence superlinearly convergent.

## How many iterations do we need?

Example: The sequence of numbers

$$
a_{k}=1,0.9,0.81,0.729,0.6561, \ldots
$$

is linearly convergent because

$$
\begin{aligned}
& \qquad\left|a_{k}\right| \leq C\left|a_{k-1}\right|^{s} \\
& \text { with } s=1, C=0.9 \text {. }
\end{aligned}
$$

Remark 1: Linearly convergent sequences can converge very slowly if $C$ is close to 1 .

Remark 2: Linear convergence is considered slow. We will want to avoid linearly convergent algorithms.

## How many iterations do we need?

Example: The sequence of numbers

$$
a_{k}=0.1,0.03,0.0027,0.00002187, \ldots
$$

is quadratically convergent because

$$
\left|a_{k}\right| \leq C\left|a_{k-1}\right|^{s}
$$

with $s=2, C=3$.

Remark 1: Quadratically convergent sequences can converge very slowly if $C$ is large. For many algorithms we can show that they converge quadratically if $a_{0}$ is small enough since then

$$
\left|a_{1}\right| \leq C\left|a_{0}\right|^{2} \leq\left|a_{0}\right|
$$

If $a_{0}$ is too large then the sequence may fail to converge since

$$
\left|a_{1}\right| \leq C\left|a_{0}\right|^{2} \geq\left|a_{0}\right|
$$

Remark 2: Quadratic convergence is considered fast. We will want to use quadratically convergent algorithms.

## How many iterations do we need?

Example: Compare linear and quadratic convergence


Gain factor $C\left|a_{k-1}\right|<1$ becomes better and better!

## Metrics of algorithmic complexity

## Summary:

- Quadratic algorithms converge faster in the limit than linear or superlinear algorithms
- Algorithms that are better than linear will need to be started close enough to the solution

Algorithms are best compared by counting the number of

- function,
- gradient, or
- Hessian evaluations
to achieve a certain accuracy. This is generally a good measure for the run-time of such algorithms.


## Part 4

# Smooth unconstrained problems: Line search algorithms 

minimize $f(x)$

## Smooth problems: Characterization of Optima

Problem: find solution $x^{*}$ of

$$
\operatorname{minimize}_{x} f(x)
$$



A strict local minimum $x^{*}$ must satisfy two conditions:
First order necessary condition: gradient must vanish:

$$
\nabla f\left(x^{*}\right)=0
$$

Sufficient condition for a strict minimum:

$$
\operatorname{spectrum}\left(\nabla^{2} f\left(x^{*}\right)\right)>0
$$

## Basic Algorithm for Smooth Unconstrained Problems

Basic idea for iterative solution $x_{k} \rightarrow x^{*}$ of the problem

$$
\operatorname{minimize} f(x)
$$

Generate a sequence $x_{k}$ by

1. finding a search direction $p_{k}$
2. choosing a step length $\alpha_{k}$

Then compute the update


$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}
$$

Iterate until we are satisfied.

## Step 1: Choose search direction

Conditions for a useful search direction:
Minimization function should be decreased in this direction:

$$
p_{k} \cdot \nabla f\left(x_{k}\right) \leq 0
$$



Search direction should lead to the minimum as straight as possible

## Step 1：Choose search direction

Basic assumption：We can usually only expect to know the minimization function $f\left(x_{k}\right)$ locally at $x_{k}$ ．
That means that we can only evaluate

$$
f\left(x_{k}\right) \quad \nabla f\left(x_{k}\right)=g_{k} \quad \nabla^{2} f\left(x_{k}\right)=H_{k}
$$

For a search direction，try to model $f$ in the vicinity of $x_{k}$ by a Taylor series：

$$
\begin{aligned}
f\left(x_{k}+p_{k}\right) & \approx f\left(x_{k}\right) \\
& +g_{k}^{T} p_{k} \\
& +\frac{1}{2} p_{k}^{T} H_{k} p_{k}+\ldots
\end{aligned}
$$



## Step 1: Choose search direction

Goal: Approximate $f(\cdot)$ in the vicinity of $x_{k}$ by a model

$$
\begin{gathered}
\qquad f\left(x_{k}+p\right) \approx m_{k}(p)=f_{k}+g_{k}^{T} p+\frac{1}{2} p^{T} H_{k} p+\ldots \\
\text { with } \quad f\left(x_{k}\right)=f_{k} \quad \nabla f\left(x_{k}\right)=g_{k} \quad \nabla^{2} f\left(x_{k}\right)=H_{k} \quad \ldots
\end{gathered}
$$

Then: Choose that direction $p_{k}$ that minimizes the model $m_{k}(p)$


## Step 1: Choose search direction

Method 1 (Gradient method, Method of Steepest Descent): search direction is minimizing direction of linear model

$$
\begin{gathered}
f\left(x_{k}+p\right) \approx f_{k}+g_{k}^{T} p=m_{k}(p) \\
p_{k}=-g_{k}
\end{gathered}
$$



## Step 1: Choose search direction

Method 2 (Newton's method):
search direction is to the minimum of the quadratic model

$$
m_{k}(p)=f_{k}+g_{k}^{T} p+\frac{1}{2} p^{T} H_{k} p
$$

Minimum is characterized by

$$
\frac{\partial m_{k}(p)}{\partial p}=g_{k}+H_{k} p=0 \quad \rightarrow \quad p_{k}=-H_{k}^{-1} g_{k}
$$



## Step 1: Choose search direction

Method 2 (Newton's method) -- alternative viewpoint:
Newton step is also generated when applying Newton's method for the root-finding problem $(F(x)=0)$ to the necessary optimality condition:

Linearize necessary condition around $x_{k}$ :

$$
\begin{gathered}
0=\nabla f(x *)=\underset{g_{k}}{\nabla f\left(x_{k}\right)}+\underbrace{\nabla}_{H_{k}}{\stackrel{V}{2}\left(x_{k}\right)}_{\left(x *-x_{k}\right)}^{\left(p_{k}\right.}+\ldots \\
p_{k}=-H_{k}^{-1} g_{k}
\end{gathered}
$$

## Step 1: Choose search direction

Method 3 (A third order method):
The search direction is to the minimum of the cubic model

$$
m_{k}(p)=f_{k}+g_{k}^{T} p+\frac{1}{2} p^{T} H_{k} p+\frac{1}{6}\left[\frac{\partial^{3} f}{\partial x_{l} \partial x_{m} \partial x_{n}}\right]_{k} p_{l} p_{m} p_{n}
$$

Minimum is characterized by the quadratic equation

$$
\frac{\partial m_{k}(p)}{\partial p}=g_{k}+H_{k} p+\frac{1}{2}\left[\frac{\partial^{3} f}{\partial x_{l} \partial x_{m} \partial x_{n}}\right]_{k} p_{l} p_{m}=0 \quad \rightarrow \quad p_{k}=? ? ?
$$

There doesn't appear to be any practical way to compute the solution of this equation for problems with more than one variable.

## Step 2: Determination of Step Length

Once the search direction is known, compute the update by choosing a step length $\alpha_{k}$ and set

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}
$$

Determine the step length by solving the 1-d minimization problem (line search):

$$
\alpha_{k}=\arg \min _{\alpha} f\left(x_{k}+\alpha p_{k}\right)
$$

For Newton's method: If the quadratic model is good, then step is good, then take full step with $\alpha_{k}=1$


## Convergence: Gradient method

Gradient method converges linearly, i.e.

$$
\left\|x_{k}-x *\right\| \leq C\left\|x_{k-1}-x *\right\|
$$

Gain is a fixed factor $C<1$
Convergence can be very slow if $C$ close to 1 .
Example: If $f(x)=x^{\top} H x$, with $H$ positive definite and for optimal line search, then

$$
C \approx \frac{\lambda_{n}-\lambda_{1}}{\lambda_{n}+\lambda_{1}} \quad\left\{\lambda_{i}\right\}=\text { spectrum } H
$$



106 $x^{2}+y^{2} \rightarrow C=0$


## Convergence: Newton's method

Newton's method converges quadratically, i.e.

$$
\left\|x_{k}-x^{*}\right\| \leq C\left\|x_{k-1}-x^{*}\right\|^{2}
$$

Optimal convergence order only if step length is 1 , otherwise slower convergence (step length is 1 if quadratic model valid!)

If quadratic convergence: accelerating progress as iterations proceed.

Size of $C$ :

$$
C \sim \sup _{x, y} \frac{\left\|\nabla^{2} f\left(x^{*}\right)^{-1}\left(\nabla^{2} f(x)-\nabla^{2} f(y)\right)\right\|}{\|x-y\|}
$$

$C$ measures size of nonlinearity beyond quadratic part.

## Example 1: Gradient method



$$
f(x, y)=-x^{3}+2 \mathbf{x}^{2}+y^{2}
$$

Local minimum at $x=y=0$, saddle point at $x=4 / 3, y=0$



## Example 1: Gradient method



Convergence of gradient method: Converges quite fast, with linear rate Mean value of convergence constant $C$ : 0.28 At ( $x=0, y=0$ ), there holds

$$
\nabla^{2} f(0,0) \sim\left\{\lambda_{1}=4, \lambda_{2}=2\right\} \quad C \approx \frac{4-2}{4+2} \approx 0.33
$$

## Example 1: Newton's method



$$
f(x, y)=-x^{3}+2 x^{2}+y^{2}
$$

Local minimum at $x=y=0$, saddle point at $x=4 / 3, y=0$



## Example 1: Newton's method



Convergence of Newton's method: Converges very fast, with quadratic rate Mean value of convergence constant $C: 0.15$

$$
\left\|x_{k}-x *\right\| \leq C\left\|x_{k-1}-x *\right\|^{2}
$$

Theoretical estimate yields $C=0.5$

## Example 1: Comparison between methods



Newton's method much faster than gradient method
Newton's method superior for high accuracy due to higher order of convergence

Gradient method simple but converges in a reasonable number of iterations as well

## Example 2: Gradient method



$$
f(x, y)=\sqrt[4]{\left(\left(x-y^{2}\right)^{2}+\frac{1}{100}\right)}+\frac{1}{100} y^{2}
$$

(Banana valley function)
Global minimum at $x=y=0$




## Example 2: Gradient method



Convergence of gradient method: Needs almost 35,000 iterations to come closer than 0.1 to the solution!
Mean value of convergence constant $C$ : 0.99995 At ( $x=4, y=2$ ), there holds

$$
\nabla^{2} f(4,2) \sim\left\{\lambda_{1}=0.1, \lambda_{2}=268\right\} \quad C \approx \frac{268-0.1}{268+0.01} \approx 0.9993
$$

## Example 2: Newton's method



$$
f(x, y)=\sqrt[4]{\left(\left(x-y^{2}\right)^{2}+\frac{1}{100}\right)}+\frac{1}{100} y^{2}
$$

(Banana valley function)
Global minimum at $\mathrm{x}=\mathrm{y}=0$



## Example 2: Newton's method



Convergence of Newton's method:
Less than 25 iterations for an accuracy of better than $10^{-7}$ !
Convergence roughly linear for first 15-20 iterations since step length $\alpha_{k} \neq 1$

Convergence roughly quadratic for last iterations with step length $\alpha_{k} \approx 1$

## Example 2: Comparison between methods



Newton's method much faster than gradient method
Newton's method superior for high accuracy (i.e. in the vicinity of the solution) due to higher order of convergence Gradient method converges too slowly for practical use

## Practical line search strategies

Ideally: Use an exact step length determination (line search) based on

$$
\alpha_{k}=\arg \min _{\alpha} f\left(x_{k}+\alpha p_{k}\right)
$$

This is a 1d minimization problem for $\alpha$, solvable via Newton's method/bisection search/etc.

However: Expensive, may require many function/gradient evaluations.

Instead: Find practical criteria that guarantee convergence but need less function evaluations!

## Practical line search strategies

Strategy: Find practical criteria that guarantee convergence but need less evaluations.

## Rationale:

- Near the optimum, quadratic approximation of $f$ is valid $\rightarrow$ take full steps (step length 1) there
- Line search only necessary far away from the solution
- If close to solution, need to try $\alpha=1$ first


## Consequence:

- Near solution, quadratic convergence of Newton's method is retained
- Far away, convergence is slower in any case.


## Practical line search strategies

Practical strategy: Use an inexact line search that:

- finds a reasonable approximation to the exact step length
- chosen step length guarantees a sufficient decrease in $f(x)$;
- chooses full step length 1 for Newton's method whenever possible.


$$
f(x, y)=x^{4}-x^{2}+y^{4}-y^{2}
$$

## Practical line search strategies

Wolfe condition 1 ("sufficient decrease" condition): Require step lengths to produce a sufficient decrease

$$
\begin{aligned}
f\left(x_{k}+\alpha p_{k}\right) \leq & f\left(x_{k}\right)+c_{1} \alpha\left[\frac{\partial f\left(x_{k}+\alpha p_{k}\right)}{\partial \alpha}\right]_{\alpha=0} \\
& =f_{k}+c_{1} \alpha \nabla f_{k} \cdot p_{k}
\end{aligned}
$$



Necessary:

$$
0<c_{1}<1
$$

Typical values:

$$
c_{1}=10^{-4}
$$

i.e.: only very small decrease mandated

## Practical line search strategies

Wolfe condition 2 ("curvature" condition):
Require step lengths where $f$ has shown sufficient curvature upwards
$\nabla f\left(x_{k}+\alpha p_{k}\right) \cdot p_{k}=\left[\frac{\partial f\left(x_{k}+\alpha p_{k}\right)}{\partial \alpha}\right]_{\alpha=\alpha_{k}} \geq c_{2}\left[\frac{\partial f\left(x_{k}+\alpha p_{k}\right)}{\partial \alpha}\right]_{\alpha=0}=c_{2} \nabla f_{k} \cdot p_{k}$


Necessary:

$$
0<c_{1}<c_{2}<1
$$

Typical:

$$
c_{2}=0.9
$$

Rationale: Exclude too small step lengths

## Practical line search strategies

## Wolfe conditions

Conditions 1 and 2 usually yield reasonable ranges for the step lengths, but do not guarantee optimal ones


## Practical line search strategies - Alternatives

Strict Wolfe conditions:

$$
\left.\left.\left\lvert\, \frac{\partial f\left(x_{k}+\alpha p_{k}\right)}{\partial \alpha}\right.\right]_{\alpha=\alpha_{k}} \mid \leq c_{2} \| \frac{\partial f\left(x_{k}+\alpha p_{k}\right)}{\partial \alpha}\right]_{\alpha=0} \mid
$$



Goldstein conditions:

$$
f\left(x_{k}+\alpha p_{k}\right) \geq f\left(x_{k}\right)+\left(1-c_{1}\right) \alpha\left[\frac{\partial f\left(x_{k}+\alpha p_{k}\right)}{\partial \alpha}\right]_{\alpha=0}
$$

## Practical line search strategies

Conditions like the ones above tell us whether a given step length is acceptable or not.

In practice, don't try too many step lengths - checking the conditions involves function evaluations of $f(x)$.

## Typical strategy ("Backtracking line search"):

1. Start with a trial step length $\alpha_{t}=\bar{\alpha}$
(for Newton's method: $\bar{\alpha}=1$ )
2. Verify acceptance conditions for this $\alpha_{t}$
3. If yes: $\alpha_{k}=\alpha_{t}$
4. If no: $\quad \alpha_{t}=c \alpha_{t}, c<1$ and go to 2 .

Note: A typical reduction factor is $c=\frac{1}{2}$


## Practical line search strategies

## An alternative strategy ("Interpolating line search"):

- Start with $\alpha_{t}^{(0)}=\bar{\alpha}=1$, set $i=0$
- Verify acceptance conditions for $\alpha_{t}^{(i)}$
- If yes: $\alpha_{k}=\alpha_{t}^{(i)}$
- If no:
- let $\quad \phi_{k}(\alpha)=f\left(x_{k}+\alpha p_{k}\right)$
- from evaluating the sufficient decrease condition

$$
f\left(x_{k}+\alpha_{t}^{(i)} p_{k}\right) \leq f_{k}+c_{1} \alpha_{t}^{(i)} \nabla f_{k} \cdot p_{k}
$$

we already know $\quad \phi_{k}(0)=f\left(x_{k}\right), \quad \phi_{k}{ }^{\prime}(0)=\nabla f_{k} \cdot p_{k}=g_{k} \cdot p_{k}$ and $\phi_{k}\left(\alpha_{t}^{(i)}\right)=f\left(x_{k}+\alpha_{t}^{(i)} p_{k}\right)$

- if $i=0$ then choose $\alpha_{t}^{(i+1)}$ as minimizer of the quadratic function that interpolates $\phi_{k}(0), \phi_{k}^{\prime}(0), \phi_{k}\left(\alpha_{t}^{(i)}\right)$
- if $i>0$ then choose $\alpha_{t}^{(i+1)}$ as the minimizer of the cubic function that interpolates $\phi_{k}(0), \phi_{k}^{\prime}(0), \phi_{k}\left(\alpha_{t}^{(i)}\right), \phi_{k}\left(\alpha_{t}^{(i-1)}\right)$


## Practical line search strategies

An alternative strategy ("Interpolating line search"):
Step 1: Quadratic interpolation


## Practical line search strategies

An alternative strategy ("Interpolating line search"):
Step 2 and following: Cubic interpolation


## Part 5

# Smooth unconstrained problems: Trust region algorithms 

minimize $f(x)$

## Line search vs. trust region algorithms

## Line search algorithms:

Choose a relatively simple strategy to find a search direction Put significant effort into finding an appropriate step length


## Line search vs. trust region algorithms

## Trust region algorithms:

Choose simple strategy to determine a step length.
Put effort into finding an appropriate search direction.

## Background:

In line search methods, we choose a direction based on a local approximation of the objective function
I.e.: Try to predict $f(x)$ far away from $x_{k}$ by looking at $f_{k}, g_{k}, H_{k}$

This can't work when still far from the solution! (Unless $f(x)$ is almost quadratic everywhere.)


## Trust region algorithms

## Trust region algorithms:

Choose simple strategy to determine a step length.
Put effort into finding an appropriate search direction.

## Alternative strategy:

Keep a number $\Delta_{k}$ that indicates up to which distance we trust that our model $m_{k}(p)$ is a good approximation of $f\left(x_{k}+p_{k}\right)$.

Find an update as follows:

$$
\begin{aligned}
p_{k}= & \arg \min _{p} m_{k}(p)=f_{k}+g_{k} \cdot p+\frac{1}{2} p^{T} B p \\
& \text { such that }\|p\| \leq \Delta_{k}
\end{aligned}
$$

Then accept the update unconditionally, i.e. without line search:

$$
x_{k+1}=x_{k}+p_{k}
$$

## Trust region algorithms

## Example:



Line search Newton direction leads to the exact minimum of approximating model $m_{k}(p)$.

However, $m_{k}(p)$ does not approximate $f(x)$ well at these distances.

Consequently, we need line search as a safe guard.

## Trust region algorithms

## Example:



Rather, decide how far we trust the model and stay within this radius!

## Trust region algorithms

## Basic trust region algorithm:

For $k=1,2, \ldots$ :

- Compute update by finding approximation $\tilde{p}_{k}$ to the solution of

$$
\begin{aligned}
p_{k}= & \arg \min _{p} m_{k}(p)=f_{k}+g_{k} \cdot p+\frac{1}{2} p^{T} B_{k} p \\
& \text { such that }\|p\| \leq \Delta_{k}
\end{aligned}
$$

- Compute predicted improvement $P I=m_{k}(0)-m_{k}\left(\tilde{p}_{k}\right)$
- Compute actual improvement

$$
A I=f\left(x_{k}\right)-f\left(x_{k}+\tilde{p}_{k}\right)
$$

- If $A I / P I<1 / 4$ then $\quad \Delta_{k+1}=\frac{1}{4}\left\|\tilde{p}_{k}\right\|$ $A I / P I>3 / 4$ and $\left\|p_{k}\right\|=\Delta_{k}$ then $\Delta_{k+1}=2 \Delta_{k}$
- If $A I / P I>\eta$ for some $\eta \in[0,1 / 4)$ then $x_{k+1}=x_{k}+\tilde{p}_{k}$ else $x_{k+1}=x_{k}$


## Trust region algorithms

## Fundamental difficulty of trust region algorithms:

$$
\begin{aligned}
& p_{k}= \arg \min _{p} m_{k}(p)=f_{k}+g_{k} \cdot p+\frac{1}{2} p^{T} B_{k} p \\
& \text { such that }\|p\| \leq \Delta_{k}
\end{aligned}
$$

- Not a trivial problem to solve!
- As with line search algorithms, don't spend too much time finding the exact minimum of an approximate model.
- Practical trust region methods are about finding cheap ways to approximate the solution of the problem above!


## Trust region algorithms: The dogleg method

Find an approximation to the solution of:

$$
\begin{gathered}
p_{k}=\arg \min _{p} m_{k}(p)=f_{k}+g_{k} \cdot p+\frac{1}{2} p^{T} B_{k} p \\
\text { such that }\|p\| \leq \Delta_{k}
\end{gathered}
$$

## Note:

If trust region radius is small, then we get the "Cauchy point" in the steepest descent direction:

$$
p_{k} \approx p_{k}^{C}=\tau p_{k}^{S D} \quad \tau \in[0,1] \quad p_{k}^{S D}=-\Delta_{k} \frac{g_{k}}{\left\|g_{k}\right\|}
$$

$p_{k}^{C}$ is the minimizer of $f(x)$ in direction $p_{k}^{S D}$

If trust region radius is large, then we get the (quasi-)Newton update:

$$
p_{k}=p_{k}^{B}=-B_{k}^{-1} g_{k}
$$

## Trust region algorithms: The dogleg method

Find an approximation to the solution of:

$$
\begin{aligned}
p_{k}= & \arg \min _{p} m_{k}(p)=f_{k}+g_{k} \cdot p+\frac{1}{2} p^{T} B_{k} p \\
& \text { such that }\|p\| \leq \Delta_{k}
\end{aligned}
$$


$\Delta_{k}<\left\|p_{k}^{B}\right\|$

$\Delta_{k}>\left\|p_{k}^{B}\right\|$

## Trust region algorithms: The dogleg method

Find an approximation to the solution of:

$$
\begin{gathered}
p_{k}=\arg \min _{p} m_{k}(p)=f_{k}+g_{k} \cdot p+\frac{1}{2} p^{T} B_{k} p \\
\text { such that }\|p\| \leq \Delta_{k}
\end{gathered}
$$



Idea:


Find the approximate solution $\tilde{p}_{k}$ along the "dogleg" line

$$
x_{k} \rightarrow x_{k}+p_{k}^{C} \rightarrow x_{k}+p_{k}^{B}
$$

## Trust region algorithms: The dogleg method

Find an approximation to the solution of:

$$
\begin{gathered}
p_{k}=\arg \min _{p} m_{k}(p)=f_{k}+g_{k} \cdot p+\frac{1}{2} p^{T} B_{k} p \\
\text { such that }\|p\| \leq \Delta_{k} \\
\hline
\end{gathered}
$$

In practice, the Cauchy point is difficult to compute because it requires a line search.
Thus, dogleg method doesn't use the minimizer $p_{k}^{C}$ of $f$ along $p_{k}^{S D}$ but the minimizer
of

$$
p_{k}^{U}=-\frac{g_{k}^{T} g_{k}}{g_{k}^{T} B_{k} g_{k}} g_{k}
$$

$$
m_{k}(p)=f_{k}+g_{k}^{T} p+\frac{1}{2} p^{T} B_{k} p
$$

The dogleg then runs along $x_{k} \rightarrow x_{k}+p_{k}^{U} \rightarrow x_{k}+p_{k}^{B}$

## Trust region algorithms: The dogleg method

Find an approximation to the solution of:

$$
\begin{gathered}
p_{k}=\arg \min _{p} m_{k}(p)=f_{k}+g_{k} \cdot p+\frac{1}{2} p^{T} B_{k} p \\
\text { such that }\|p\| \leq \Delta_{k}
\end{gathered}
$$

Dogleg algorithm:
If $\quad p_{k}^{B}=-B_{k}^{-1} g_{k} \quad$ satisfies $\quad\left\|p_{k}^{B}\right\|<\Delta_{k} \quad$ then set $\tilde{p}_{k}=p_{k}^{B}$
Otherwise, if $p_{k}^{U}=-\frac{g_{k}^{T} g_{k}}{g_{k}^{T} B_{k} g_{k}} g_{k}$ satisfies $\left\|p_{k}^{U}\right\|>\Delta_{k} \quad$ then set $\tilde{p}_{k}=\frac{p_{k}^{U}}{\left\|p_{k}^{U}\right\|} \Delta_{k}$
Otherwise choose $\tilde{p}_{k}$ as the intersection point of the line $p_{k}^{U} \rightarrow p_{k}^{B}$ and the circle with radius $\Delta_{k}$

## Part 6

# Practical aspects of Newton methods 

minimize $f(x)$

## What if the Hessian is not positive definite

At the solution, Hessian $\nabla^{2} f\left(x^{*}\right)$ is positive definite. If $f(x)$ is smooth, Hessian is positive definite near the optimum.

However, this needs not be so far away from the optimum:

$$
\begin{gathered}
H_{0}=\nabla^{2} f\left(x_{0}\right)=\left(\begin{array}{cc}
-0.022 & 0.134 \\
0.134 & -0.337
\end{array}\right) \\
\lambda_{1}=-0.386, \quad \lambda_{2}=0.027
\end{gathered}
$$

Quadratic model

$$
m_{k}(p)=f_{k}+g_{k}^{T} p+\frac{1}{2} p^{T} H_{k} p
$$

has saddle point instead of minimum, Newton step is invalid!


## What if the Hessian is not positive definite

Background: Search direction only useful if it is a descent direction:

$$
\nabla f\left(x_{k}\right)^{T} \cdot p_{k}<0
$$

Trivially satisfied for Gradient method, for Newton's method there holds:

$$
p_{k}=-H_{k}^{-1} g_{k} \quad \rightarrow \quad g_{k}^{T} \cdot p_{k}=-g_{k}^{T} H_{k}^{-1} g_{k}<0
$$

Search direction only a guaranteed descent direction, if $H$ positive definite!

Otherwise search direction is direction to saddle point of quadratic model and might be a direction of ascent!


## What if the Hessian is not positive definite

If Hessian is not positive definite, then modify the quadratic model:

- retain as much information as possible;
- model should be convex, so that we can seek a minimum.

The general strategy then is to replace the quadratic model by a positive definite one:

$$
m_{k}(p)=f_{k}+g_{k}^{T} p+\frac{1}{2} p^{T} \tilde{H}_{k} p
$$

Here, $\tilde{H}_{k_{\tilde{N}}}$ is a suitable modification of exact Hessian $H_{k}=\nabla^{2} f\left(x_{k}\right)$ so that $\tilde{H}_{k}$ is positive definite.

Note: To retain ultimate quadratic convergence, we need that

$$
\tilde{H}_{k} \rightarrow H_{k} \quad \text { as } \quad x_{k} \rightarrow x^{*}
$$

## What if the Hessian is not positive definite

The Levenberg-Marquardt modification:
Choose

$$
\tilde{H}_{k}=H_{k}+\mathrm{\tau} I \quad \tau>-\lambda_{i}
$$

so that the minimum of

$$
m_{k}(p)=f_{k}+g_{k}^{T} p+\frac{1}{2} p^{T} \tilde{H}_{k} p
$$

lies at

$$
p_{k}=-\tilde{H}_{k}^{-1} g_{k}=-\left(H_{k}+\mathrm{\tau} I\right)^{-1} g_{k}
$$

Note: Search direction is mixture between Newton direction and gradient.

Note: Close to the solution the Hessian must become positive definite and we can choose $\tau=0$


## What if the Hessian is not positive definite

The eigenvalue modification strategy:
Since $H$ is symmetric, it has a complete set of eigenvectors:

$$
H_{k}=\nabla^{2} f\left(x_{k}\right)=\sum_{i} \lambda_{i} v_{i} v_{i}^{T}
$$

Therefore replace the quadratic model by a positive definite one:

$$
m_{k}(p)=f_{k}+g_{k}^{T} p+\frac{1}{2} p^{T} \tilde{H}_{k} p
$$

with

$$
\tilde{H}_{k}=\sum_{i} \max \left\{\lambda_{i}, \epsilon\right\} v_{i} v_{i}^{T}
$$

Note: Only modify the Hessian in directions of negative curvature.

Note: Close to the solution, all eigenvalues become positive and we get again the original Newton matrix.

## What if the Hessian is not positive definite

One problem with the modification

$$
\tilde{H}_{k}=\sum_{i} \max \left\{\lambda_{i}, \epsilon\right\} v_{i} v_{i}^{T}
$$

is that the search direction is given by

$$
p_{k}=-\tilde{H}_{k}^{-1} g_{k}=-\sum_{i} \frac{1}{\max \left|\lambda_{i}, \epsilon\right|} v_{i}\left(v_{i}^{T} g_{k}\right)
$$

that is search direction has large component (of size $1 / \varepsilon$ ) in direction of modified curvatures!

An alternative that avoids this is to use

$$
\tilde{H}_{k}=\sum_{i}\left|\lambda_{i}\right| v_{i} v_{i}^{T}
$$

## What if the Hessian is not positive definite

Theorem: Using full step length and either of the Hessian modifications

$$
\begin{aligned}
& \tilde{H}_{k}=H_{k}+\tau I \quad \tau>-\lambda_{i} \\
& \tilde{H}_{k}=\sum_{i} \max \left\{\lambda_{i}, \epsilon\right\} v_{i} v_{i}^{T}
\end{aligned}
$$

we have that if $x_{k} \rightarrow x^{*}$ and if $f \in C^{2,1}$ then convergence happens with quadratic rate.

Proof: Since $f$ is twice continuously differentiable, there is a $k$ such that $x_{k}$ is close enough to $x^{\star}$ that $H_{k}$ is positive definite. When that is the case, then

$$
\tilde{H}_{k}=H_{k}
$$

for all following iterations, providing the quadratic convergence rate of the full step Newton method.

## What if the Hessian is not positive definite



## Example:

$$
f(x, y)=x^{4}-x^{2}+y^{4}-y^{2}
$$

Blue regions indicate that Hessian
$\nabla^{2} f(x, y)=\left(\begin{array}{cc}12 x^{2}-2 & 0 \\ 0 & 12 y^{2}-2\end{array}\right)$
is not positive definite.

$$
\text { minima at } x=\frac{ \pm \sqrt{2}}{2,} y=\frac{ \pm \sqrt{(2)}}{2}
$$

## What if the Hessian is not positive definite



Starting point:

$$
\begin{aligned}
& x_{0}=0.1 \quad y_{0}=0.87 \\
& H_{0}=\left(\begin{array}{cc}
-1.88 & 0 \\
0 & 7.08
\end{array}\right)
\end{aligned}
$$

1.Negative gradient
2.Unmodified Hessian search direction
3.Search direction with eigenvalue modified Hessian $\left(\varepsilon=10^{-6}\right)$
4.Search direction with shifted Hessian ( $\tau=2.5$; search direction only good by lucky choice of $\tau$ )

## Truncated Newton methods

In any Newton or Trust Region method, we have to solve an equation of the sort

$$
H_{k} p_{k}=-g_{k}
$$

or potentially with a modified Hessian:

$$
\tilde{H}_{k} p_{k}=-g_{k}
$$

Oftentimes, computing the Hessian is more expensive than inverting it, but not always.

Question: Could we possibly get away with only approximately solving this problem, i.e. finding

$$
p_{k} \approx-H_{k}^{-1} g_{k}
$$

with suitable conditions on how accurate the approximation is?

## Truncated Newton methods

Example: Since the Hessian (or a modified version) is a positive definite matrix, we may want to solve

$$
H_{k} p_{k}=-g_{k}
$$

using an iterative method such as the Conjugate Gradient method, Gauss-Seidel, Richardson iteration, SSOR, etc etc.

While all these methods eventually converge to the exact Newton direction, we may want to truncate this iteration at one point.

Question: When can we terminate this iteration?

## Truncated Newton methods

Theorem 1: Let $\hat{p}_{k}$ be an approximation to the Newton direction defined by

$$
H_{k} p_{k}=-g_{k}
$$

and let there be a sequence of numbers $\left\{\eta_{k}\right\}, \eta_{k}<1$ so that

$$
\frac{\left\|g_{k}+H_{k} \hat{p}_{k}\right\|}{\left\|g_{k}\right\|} \leq \eta_{k}<1
$$

Then if $x_{k} \rightarrow x^{*}$ then the full step Newton method converges with linear order.

## Truncated Newton methods

Theorem 2: Let $\hat{p}_{k}$ be an approximation to the Newton direction defined by

$$
H_{k} p_{k}=-g_{k}
$$

and let there be a sequence of numbers $\left\{\eta_{k}\right\}, \eta_{k}<1, \eta_{k} \rightarrow 0$ so that

$$
\frac{\left\|g_{k}+H_{k} \hat{p}_{k}\right\|}{\left\|g_{k}\right\|} \leq \eta_{k}<1
$$

Then if $x_{k} \rightarrow x^{*}$ then the full step Newton method converges with superlinear order.

## Truncated Newton methods

Theorem 3: Let $\hat{p}_{k}$ be an approximation to the Newton direction defined by

$$
H_{k} p_{k}=-g_{k}
$$

and let there be a sequence of numbers $\left\{\eta_{k}\right\}, \eta_{k}<1, \eta_{k}=O\left(\left\|g_{k}\right\|\right)$ so that

$$
\frac{\left\|g_{k}+H_{k} \hat{p}_{k}\right\|}{\left\|g_{k}\right\|} \leq \eta_{k}<1
$$

Then if $\quad x_{k} \rightarrow x^{*}$ then the full step Newton method converges with quadratic order.

## Part 7

## Quasi-Newton update formulas

$$
B_{k+1}=B_{k}+\ldots
$$

## Quasi-Newton update formulas

## Observation 1:

Computing the exact Hessian to determine the Newton search direction

$$
H_{k} p_{k}=-g_{k}
$$

is expensive, and sometimes impossible.
It at least doubles the effort per iteration because we need not only the first but also the second derivative of $f(x)$.

It also requires us to solve a linear system for the search direction.

## Quasi-Newton update formulas

Observation 2:
We know that we can get superlinear convergence if we choose the update $p_{k}$ using

$$
B_{k} p_{k}=-g_{k}
$$

instead of

$$
H_{k} p_{k}=-g_{k}
$$

under certain conditions on the matrix $B_{k}$.

## Quasi-Newton update formulas

## Question:

- Maybe it is possible to find matrices $B_{k}$ for which:
- Computing $B_{k}$ is cheap and requires no additional function evaluations
- Solving

$$
B_{k} p_{k}=-g_{k}
$$

for $p_{k}$ is cheap

- The resulting iteration still converges with superlinear order.


## Motivation of ideas

Consider a function $p(x)$.
The Fundamental Theorem of Calculus tells us that

$$
p(z)-p(x)=\nabla p(\xi)^{T}(z-x)
$$

for some $\xi=x+t(z-x), \quad t \in[0,1]$
Let's apply this to $\quad p(x)=\nabla f(x), \quad z=x_{k}, x=x_{k-1} \quad$ :

$$
\begin{aligned}
\nabla f\left(x_{k}\right)-\nabla f\left(x_{k-1}\right) & =g_{k}-g_{k-1}=\nabla^{2} f\left(x_{k}-t \propto p_{k}\right)\left(x_{k}-x_{k-1}\right) \\
& =\tilde{H}\left(x_{k}-x_{k-1}\right)
\end{aligned}
$$

Let us denote $\quad y_{k-1}=g_{k}-g_{k-1}, s_{k-1}=x_{k}-x_{k-1} \quad$ then this reads

$$
\tilde{H} s_{k-1}=y_{k-1}
$$

with an "average" Hessian $\tilde{H}$.

## Motivation of ideas

## Requirements:

- We seek a matrix $B_{k+1}$ so that
- The "secant condition" holds:

$$
B_{k+1} s_{k}=y_{k}
$$

- $B_{k+1}$ is symmetric
- $B_{k+1}$ is positive definite
- $B_{k+1}$ changes minimally from $B_{k}$
- The update equation is easy to solve for

$$
p_{k+1}=-B_{k+1}^{-1} g_{k+1}
$$

## Davidon-Fletcher-Powell

## The DFP update formula:

Given $B_{k}$ define $B_{k+1}$ by

$$
\begin{aligned}
B_{k+1} & =\left(I-\gamma y_{k} s_{k}^{T}\right) B_{k}\left(I-\gamma s_{k} y_{k}^{T}\right)+\gamma y_{k} y_{k}^{T} \\
\gamma_{k} & =\frac{1}{y_{k}^{T} s_{k}}
\end{aligned}
$$

This satisfies the conditions:

- It is symmetric and positive definite
- It is among all possible matrices the one that minimizes

$$
\left\|\tilde{H}^{-1 / 2}\left(B_{k+1}-B_{k}\right) \tilde{H}^{-1 / 2}\right\|_{F}
$$

- It satisfies the secant condition $B_{k+1} s_{k}=y_{k}$


## Broyden-Fletcher-Goldfarb-Shanno

## The BFGS update formula:

Given $B_{k}$ define $B_{k+1}$ by

$$
B_{k+1}=B_{k}-\frac{B_{k} s_{k} s_{K}^{T} B_{k}}{s_{k}^{T} B_{k} s_{K}}+\frac{y_{k} y_{k}^{T}}{y_{k}^{T} s_{k}}
$$

This satisfies the conditions:

- It is symmetric and positive definite
- It is among all possible matrices the one that minimizes

$$
\left\|\tilde{H}^{1 / 2}\left(B_{k+1}^{-1}-B_{k}^{-1}\right) \tilde{H}^{1 / 2}\right\|_{F}
$$

- It satisfies the secant condition $B_{k+1} s_{k}=y_{k}$


## Broyden-Fletcher-Goldfarb-Shanno

## So far:

- We seek a matrix $B_{k+1}$ so that
- The secant condition holds:

$$
B_{k+1} s_{k}=y_{k}
$$

- $B_{k+1}$ is symmetric
- $B_{k+1}$ is positive definite
- $B_{k+1}$ changes minimally from $B_{k}$ in some sense
- The update equation is easy to solve for

$$
p_{k}=-B_{k}^{-1} g_{k}
$$

## DFP and BFGS

## Now a miracle happens:

For the DFP formula:

$$
\begin{aligned}
& B_{k+1}=\left(I-\gamma_{k} y_{k} s_{k}^{T}\right) B_{k}\left(I-\gamma_{k} s_{k} y_{k}^{T}\right)+\gamma_{k} y_{k} y_{k}^{T}, \quad \gamma_{k}=\frac{1}{y_{k}^{T} s_{k}} \\
& B_{k+1}^{-1}=B_{k}^{-1}-\frac{B_{k}^{-1} y_{k} y_{k}^{T} B_{k}^{-1}}{y_{k}^{T} B_{k}^{-1} y_{k}}+\frac{s_{k} s_{k}^{T}}{y_{k}^{T} s_{k}}
\end{aligned}
$$

For the BFGS formula:

$$
\begin{aligned}
& B_{k+1}=B_{k}-\frac{B_{k} s_{k} s_{K}^{T} B_{k}}{s_{k}^{T} B_{k} s_{k}}+\frac{y_{k} y_{k}^{T}}{y_{k}^{T} s_{k}} \\
& B_{k+1}^{-1}=\left(I-\rho_{k} s_{k} y_{k}^{T}\right) B_{k}^{-1}\left(I-\rho_{k} y_{k} s_{k}^{T}\right)+\rho_{k} s_{k} s_{k}^{T}, \quad \rho_{k}=\frac{1}{y_{k}^{T} s_{k}}
\end{aligned}
$$

This makes computing the next update very cheap!

## DFP + BFGS = Broyden class

## What if we mixed:

$$
\begin{aligned}
& B_{k+1}^{D F P}=\left(I-\gamma_{k} y_{k} s_{k}^{T}\right) B_{k}\left(I-\gamma_{k} s_{k} y_{k}^{T}\right)+\gamma_{k} y_{k} y_{k}^{T}, \quad \gamma_{k}=\frac{1}{y_{k}^{T} s_{k}} \\
& B_{k+1}^{B F G S}=B_{k}-\frac{B_{k} s_{k} s_{K}^{T} B_{k}}{s_{k}^{T} B_{k} s_{k}}+\frac{y_{k} y_{k}^{T}}{y_{k}^{T} s_{k}} \\
& B_{k+1}=\phi_{k} B_{k+1}^{D F P}+\left(1-\phi_{k}\right) B_{k}^{B F G S}
\end{aligned}
$$

This is called the "Broyden class" of update formulas.
The class of Broyden methods with $0 \leq \phi_{k} \leq 1 \quad$ is called the "restricted Broyden class".

## $\underline{\text { DFP }+ \text { BFGS }=\text { Broyden class }}$

Theorem: Let $f \in C^{2}$, let $x_{0}$ be a starting point so that the set

$$
\Omega=\left\{x: f(x) \leq f\left(x_{0}\right)\right\}
$$

is convex. Let $B_{0}$ be any symmetric positive definite matrix. Then

$$
x_{k} \rightarrow x^{*}
$$

for any sequence $\quad x_{k}$ generated by a quasi-Newton method that uses a Hessian update formula by any member of the restricted Broyden class with the exception of the DFP method ( $\phi_{k}=1$ ).

## $\underline{\text { DFP }}+\mathbf{B F G S}=$ Broyden class

Theorem: Let $f \in C^{2,1}$. Assume the BFGS updates converge, then

$$
x_{k} \rightarrow x^{*}
$$

with superlinear order.

## Practical BFGS: Starting matrix

Question: How do we choose the initial matrix $B_{0}$ or $B_{0}^{-1}$ ?
Observation 1: The theorem stated that we will eventually converge for any symmetric, positive definite starting matrix.

In particular, we could choose a multiple of the identity matrix

$$
B_{0}=\beta I, \quad B_{0}^{-1}=\frac{1}{\beta} I
$$

Observation 2: If $\beta$ is too small, then

$$
p_{0}=-B_{0}^{-1} g_{0}=-\frac{1}{\beta} g_{0}
$$

is too large, and we need many trials in line search to find a suitable step length.

Observation 3: The matrices $B$ should approximate the Hessian matrix, so they at least need to have the same physical units.

## Practical BFGS: Starting matrix

## Practical approaches:

Strategy 1: Compute the first gradient $g_{0}$, choose a "typical" step length $\delta$, then set

$$
B_{0}=\frac{\left\|g_{0}\right\|}{\delta} I, \quad B_{0}^{-1}=\frac{\delta}{\left\|g_{0}\right\|} I
$$

so that we get

$$
p_{0}=-B_{0}^{-1} g_{0}=-\delta \frac{g_{0}}{\left\|g_{0}\right\|}
$$

Strategy 2: Approximate the true Hessian somehow. For example, do one step with the heuristic above, choose
and start over again.

$$
B_{0}=\frac{y_{1}^{T} y_{1}}{y_{1}^{T} s_{1}} I, \quad B_{0}^{-1}=\frac{y_{1}^{T} s_{1}}{y_{1}^{T} y_{1}} I
$$

## Practical BFGS: Limited Memory BFGS (LM-BFGS)

Observation: The matrices

$$
\begin{aligned}
& B_{k+1}=B_{k}-\frac{B_{k} s_{k} s_{K}^{T} B_{k}}{s_{k}^{T} B_{k} s_{k}}+\frac{y_{k} y_{k}^{T}}{y_{k}^{T} s_{k}} \\
& B_{k+1}^{-1}=\left(I-\rho_{k} s_{k} y_{k}^{T}\right) B_{k}^{-1}\left(I-\rho_{k} y_{k} s_{k}^{T}\right)+\rho_{k} s_{k} s_{k}^{T}, \quad \rho_{k}=\frac{1}{y_{k}^{T} s_{k}}
\end{aligned}
$$

are full, even if the true Hessian is sparse.

## Consequence:

We need to compute all $n^{2}$ entries, and store them.

## Practical BFGS: Limited Memory BFGS (LM-BFGS)

Solution: Note that in the kth iteration, we can write

$$
\begin{aligned}
B_{k}^{-1}= & V_{k-1}^{T} B_{k-1}^{-1} V_{k-1}+\rho_{k-1} s_{k-1} s_{k-1}^{T} \\
& \text { with } \rho_{k-1}=\frac{1}{y_{k-1}^{T} s_{k-1}}, V_{k-1}=\left(I-\rho_{k-1} y_{k-1} s_{k-1}^{T}\right)
\end{aligned}
$$

We can expand this recursively:

$$
\begin{aligned}
B_{k}^{-1}= & V_{k-1}^{T} B_{k-1}^{-1} V_{k-1}+\rho_{k-1} s_{k-1} s_{k-1}^{T} \\
= & V_{k-1}^{T} V_{k-2}^{T} B_{k-2}^{-1} V_{k-2}^{T} V_{k-1}^{T} \\
& +\rho_{k-2} V_{k-1}^{T} s_{k-1} s_{k-2}^{T} V_{k-1}+\rho_{k-1} s_{k-1} s_{k-1}^{T} \\
= & \ldots \\
= & {\left[V_{k-1}^{T} \cdots V_{1}^{T}\right] B_{0}^{-1}\left[V_{1} \cdots V_{k-1}\right] } \\
& +\sum_{j=1}^{k} \rho_{k-j}\left[\left[V_{k-1}^{T} \cdots V_{k-j+1}^{T}\right] s_{k-j} s_{k-j}^{T}\left[V_{k-j+1} \cdots V_{k-1}\right]\right\}
\end{aligned}
$$

Consequence: We need only store $k n$ entries.

## Practical BFGS: Limited Memory BFGS (LM-BFGS)

Problem: $k n$ elements may still be quite a lot if we need many iterations. Forming the product with this matrix will then also be expensive.

Solution: Limit memory and CPU time by only storing the last $m$ updates:

$$
\begin{aligned}
B_{k}^{-1}= & {\left[V_{k-1}^{T} \cdots V_{k-m}^{T}\right] B_{0, k}^{-1}\left[V_{k-m} \cdots V_{k-1}\right] } \\
& +\sum_{j=1}^{m} \rho_{k-j}\left\{\left[V_{k-1}^{T} \cdots V_{k-j+1}^{T}\right] s_{k-j} s_{k-j}^{T}\left[V_{k-j+1} \cdots V_{k-1}\right]\right\}
\end{aligned}
$$

Consequence: We need only store $m n$ entries and multiplication with this matrix requires $2 m n+O\left(m^{3}\right)$ operations.

## Practical BFGS: Limited Memory BFGS (LM-BFGS)

$$
\begin{aligned}
B_{k}^{-1}= & {\left[V_{k-1}^{T} \cdots V_{k-m}^{T}\right] B_{0, k}^{-1}\left[V_{k-m} \cdots V_{k-1}\right] } \\
& +\sum_{j=1}^{m} \rho_{k-j}\left\{\left[V_{k-1}^{T} \cdots V_{k-j+1}^{T}\right] s_{k-j} s_{k-j}^{T}\left[V_{k-j+1} \cdots V_{k-1}\right]\right\}
\end{aligned}
$$

## In practice:

- Initial matrix can be chosen independently in each iteration; typical approach is again

$$
B_{0, k}^{-1}=\frac{y_{k-1}^{T} S_{k-1}}{y_{k-1}^{T} y_{k-1}} I
$$

- Typical values for $m$ are between 3 and 30 .


## Parts 1-7

## Summary of methods for smooth unconstrained problems

minimize $f(x)$

## Summary

- Newton's method is unbeatable with regard to speed of convergence
- However: To converge, one needs
- a line search method + conditions like the Wolfe conditions
- Hessian matrix modification if it is not positive definite
- Newton's method can be expensive or infeasible if
- computing Hessians is complicated
- the number of variables is large
- Quasi-Newton methods, e.g. LM-BFGS, help:
- only need first derivatives
- need little memory and no explicit matrix inversions
- but converge slower (at best superlinear)
- Trust region methods are an alternative to Newton's method but share the same drawbacks


## Part 8

## Equality-constrained Problems

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
& g_{i}(x)=0, \quad i=1, \ldots, n_{e}
\end{aligned}
$$

## An example

Consider the example of the body suspended from a ceiling with springs, but this time with an additional rod of fixed length attached to a fixed point:


To find the position of the body we now need to solve the following problem:

$$
\begin{aligned}
\text { minimize } & f(\vec{x})=E(x, z)=\sum_{i} E_{\text {spring }, i}(x, z)+E_{\text {pot }}(x, z) \\
& \left\|\vec{x}-\vec{x}_{0}\right\|-L_{\mathrm{rod}}=0
\end{aligned}
$$

## An example

We can gain some insight into the problem by plotting the energy as a function of $(x, z)$ along with the constraint:


## Definitions

We call this the standard form of equality constrained problems:

$$
\begin{array}{rl}
\operatorname{minimize}_{x \in D \subset R^{n}} & f(x) \\
& g_{i}(x)=0, \quad i=1 \ldots n_{e}
\end{array}
$$

We will also frequently write this as follows, implying equality elementwise:

$$
\begin{array}{rl}
\operatorname{minimize}_{x \in D \subset R^{n}} & f(x) \\
& g(x)=0
\end{array}
$$

## Definitions

A trivial reformulation of the problem is obtained by defining the feasible set:

$$
\Omega=\left\{x \in R^{n}: g(x)=0\right\}
$$

Then the original problem is equivalently recast as

$$
\operatorname{minimize}_{x \in D \cap \Omega \subset R^{n}} f(x)
$$

Note 1: Reformulation is not of much practical interest.
Note 2: Feasible set can be continuous or discrete, or empty if constraints are mutually incompatible.

We will always assume that it is continuous and non-empty.

## The quadratic penalty method

Observation: The solution of

$$
\begin{array}{rl}
\operatorname{minimize}_{x \in D \subset R^{n}} & f(x) \\
& g(x)=0
\end{array}
$$

must lie within the feasible set where $g(x)=0$.

Idea: Let's relax the constraint and also search close to where $g(x)$ is small but not zero. However, make sure that the objective function becomes very large if far away from the feasible set:

$$
\operatorname{minimize}_{x \in D \subset R^{n}} Q_{\mu}(x)=f(x)+\frac{1}{2 \mu}\|g(x)\|^{2}
$$

$Q_{\mu}(x)$ is called the quadratic relaxation of the constrained minimization problem. $\mu$ is the penalty parameter.

## The quadratic penalty method

## Why is $Q_{\mu}(x)$ called relaxation of the constrained

 minimization problem with $f(x), g(x)$ ?Consider the original problem

$$
\begin{aligned}
\operatorname{minimize} & f(\vec{x})=E(x, z)=\sum_{i} E_{\text {spring }, i}(x, z)+E_{\mathrm{pot}}(x, z) \\
& \left\|\vec{x}-\vec{x}_{0}\right\|-L_{\mathrm{rod}}=0
\end{aligned}
$$

with relaxation

$$
Q_{\mu}(\vec{x})=E(x, z)+\frac{1}{2 \mu}\left(\left\|\vec{x}-\vec{x}_{0}\right\|-L_{\mathrm{rod}}\right)^{2}
$$

Replacing fixed rod by spring with constant $\tilde{D}$ would yield an unconstrained problem with objective function

$$
\tilde{f}(\vec{x})=E(x, z)+\frac{1}{2} \tilde{D}\left(\left\|\vec{x}-\vec{x}_{0}\right\|-L_{\mathrm{rod}}\right)^{2}
$$

## The quadratic penalty method

Example: $Q_{\mu}(x)$ with $\mu=$ infinity


## The quadratic penalty method

Example: $Q_{\mu}(x)$ with $\mu=0.01$


## The quadratic penalty method

Example: $Q_{\mu}(x)$ with $\mu=0.001$


## The quadratic penalty method

Example: $Q_{\mu}(x)$ with $\mu=0.00001$


## The quadratic penalty method

## Algorithm:

Given $x_{0}^{\text {sart }},\left\{\mu_{t}\right\} \rightarrow 0,\left\{\tau_{t}\right\} \rightarrow 0$
For $\mathrm{t}=0,1,2, \ldots$ :
Find approximation $\tilde{x}_{t}^{*}$ to the (unconstrained) mimizer $x_{t}^{*}$ of $Q_{\mu}(x)$ that satisfies

$$
\left\|\nabla Q_{\mu_{t}}\left(\tilde{x}_{t}^{*}\right)\right\| \leq \tau_{t}
$$

using $x_{t}^{\text {sata }}$ as starting point.
Set $t=t+1, \quad x_{t}^{\text {statt }}=\tilde{x}_{t-1}^{*}$

## Typical values:

$$
\begin{aligned}
& \mu_{t}=c \mu_{t-1}, \quad c=0.1 \text { to } 0.5 \\
& \tau_{t}=c \tau_{t-1}
\end{aligned}
$$

## The quadratic penalty method

Positive properties of the quadratic penalty method:

- Algorithms for unconstrained problems readily available;
- $Q$ at least as smooth as $f, g_{i}$ for equality constrained problems;
- Usually only few steps are needed for each penalty parameter, since good starting point known;
- It is not really necessary to solve each unconstrained minimization to high accuracy.

Negative properties of the quadratic penalty method:

- Minimizers for finite penalty parameters are usually infeasible;
- Problem is becoming more and more ill-conditioned near optimum as penalty parameter is decreased, Hessian large.


## The quadratic penalty method

Theorem (Convergence): Let $x_{t}^{*}$ be exact minimizer of $Q_{\mu}(x)$ and let $\mu_{t} \rightarrow 0$. Let $f, g$ be once differentiable.
Then every limit point of the sequence $\left\{x_{t}^{*}\right\}_{t}=1,2, \ldots$ is a solution of the constrained minimization problem

$$
\begin{array}{rl}
\operatorname{minimize}_{x \in D \subset R^{n}} & f(x) \\
& g(x)=0
\end{array}
$$

## The quadratic penalty method

Theorem (Convergence): Let $\tilde{x}_{t}^{*}$ be approximate minimizers of $\quad Q_{\mu_{t}}(x) \quad$ with

$$
\left\|\nabla Q_{\mu_{t}}\left(\tilde{x}_{t}^{*}\right)\right\| \leq \tau_{t}
$$

for a sequence $\quad \mathrm{T}_{t} \rightarrow 0$ and let $\mu_{t} \rightarrow 0$. Let $f \in C^{2}, g \in C^{1 .}$
Then every limit point of the sequence $\left\{x_{t}^{*}\right\}_{t}=1,2, \ldots$ satisfies certain first-order necessary conditions for solutions of the constrained minimization problem

$$
\begin{array}{rl}
\operatorname{minimize}_{x \in D \subset R^{n}} & f(x) \\
& g(x)=0
\end{array}
$$

## Lagrange multipliers

Consider a (single) constraint $g(x)$ as a function of $x$ :

$$
\boldsymbol{\delta}(\vec{x})=\left|\left|\vec{x}-\vec{x}_{0}\right|\right|-\Sigma_{\mathrm{rod}}
$$

## Lagrange multipliers

Now look at the objective function $f(x)$ :


## Lagrange multipliers

Now both $f(x), g(x)$ :


## Lagrange multipliers

Now both $f(x), g(x)$ :


## Conclusion:

- Solution is where isocontours are tangential to each other
- That is, where gradients of $f$ and $g$ are parallel
- Solution is where $g(x)=0$


## Lagrange multipliers

## Conclusion:

- The solution is where gradients of $f$ and $g$ are parallel
- The solution is where $g(x)=0$

In mathematical terms:
The (local) solutions of

$$
\begin{aligned}
\operatorname{minimize} & f(\vec{x})=E(x, z)=\sum_{i} E_{\text {spring }, i}(x, z)+E_{\mathrm{pot}}(x, z) \\
& g(\vec{x})=\left\|\vec{x}-\vec{x}_{0}\right\|-L_{\mathrm{rod}}=0
\end{aligned}
$$

are where the following conditions hold for some value of $\lambda$ :

$$
\begin{aligned}
\nabla f(\vec{x})-\lambda \nabla g(\vec{x}) & =0 \\
g(\vec{x}) & =0
\end{aligned}
$$

## Lagrange multipliers

Consider the same situation for three variables and two constraints:


## Lagrange multipliers

Constraint 1: Contours of $g_{1}(x)$


## Lagrange multipliers

Constraint 2: Contours of $\boldsymbol{g}_{2}(x)$


## Lagrange multipliers

Constraints 1+2 at the same time


## Lagrange multipliers

Constraints $1+2$ and $f(x)$ :


## Lagrange multipliers



## Conclusion:

- The solution is where the gradient of $f$ can be written as a linear combination of the gradients of $g_{1}, g_{2}$
-The solution is where $g_{1}(x)=0, g_{2}(x)=0$


## Lagrange multipliers

Generally (under certain conditions):
The (local) solutions of

$$
\begin{aligned}
\text { minimize } f(\vec{x}) & f(\vec{x}): \mathbb{R}^{n} \rightarrow \mathbb{R} \\
\vec{g}(\vec{x})=0, & \vec{g}(\vec{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{e}}
\end{aligned}
$$

are where the conditions

$$
\begin{aligned}
\nabla f(\vec{x})-\vec{\lambda} \cdot \nabla \vec{g}(\vec{x}) & =0 \\
\vec{g}(\vec{x}) & =0
\end{aligned}
$$

hold for some vector of Lagrange multipliers $\vec{\lambda} \in \mathbb{R}^{n_{e}}$
Note: There are enough equations to determine both $x$ and $\lambda$.

## Lagrange multipliers

By introducing the Lagrangian

$$
L(\vec{x}, \vec{\lambda})=f(\vec{x})-\vec{\lambda} \cdot \vec{g}(\vec{x}), \quad L: \mathbb{R}^{n} \times \mathbb{R}^{n_{e}} \rightarrow \mathbb{R}
$$

the conditions

$$
\begin{aligned}
\nabla f(\vec{x})-\vec{\lambda} \cdot \nabla \vec{g}(\vec{x}) & =0 \\
\vec{g}(\vec{x}) & =0
\end{aligned}
$$

can conveniently be written as

$$
\nabla_{\{\vec{x}, \vec{\lambda}\}} L(\vec{x}, \vec{\lambda})=0
$$

## Constraint Qualification: Example 1

When can we characterize solutions by Lagrange multipliers?
Consider the problem

$$
\begin{array}{cl}
\operatorname{minimize} & f(\vec{x})=(x+1)^{2}+(y+1)^{2}+z^{2} \\
& g_{1}(\vec{x})=x=0 \\
& g_{2}(\vec{x})=y=0
\end{array}
$$

with solution

$$
\vec{x}^{*}=(0,0,0)^{T}
$$

At the solution, we have

$$
\nabla f\left(\vec{x}^{*}\right)=(2,2,0)^{T}, \quad \nabla g_{1}\left(\vec{x}^{*}\right)=(1,0,0)^{T}, \quad \nabla g_{2}\left(\vec{x}^{*}\right)=(0,1,0)^{T}
$$

and consequently

$$
\vec{\lambda}=(2,2)^{T}
$$

## Constraint Qualification: Example 1

When can we characterize solutions by Lagrange multipliers?
Compare this with the problem

$$
\begin{aligned}
\operatorname{minimize} & f(\vec{x})=(x+1)^{2}+(y+1)^{2}+z^{2} \\
& g_{1}(\vec{x})=x^{2}=0 \\
& g_{2}(\vec{x})=y^{2}=0
\end{aligned}
$$

with the same solution

$$
\vec{x}^{*}=(0,0,0)^{T}
$$

At the solution, we now have

$$
\nabla f\left(\vec{x}^{*}\right)=(2,2,0)^{T}, \quad \nabla g_{1}\left(\vec{x}^{*}\right)=\nabla g_{2}\left(\vec{x}^{*}\right)=(0,0,0)^{T}
$$

and there are no Lagrange multipliers so that

$$
\nabla f\left(\vec{x}^{*}\right)=\vec{\lambda} \cdot \nabla \vec{g}\left(\vec{x}^{*}\right)
$$

## Constraint Qualification: Example 2

When can we characterize solutions by Lagrange multipliers?
Consider the problem minimize $f(\vec{x})=y$,

$$
\begin{aligned}
& g_{1}(\vec{x})=(x-1)^{2}+y^{2}-1=0 \\
& g_{2}(\vec{x})=(x+1)^{2}+y^{2}-1=0
\end{aligned}
$$



There is only a single point at which both constraints are satisfied:

$$
\vec{x}^{*}=(0,0)^{T}
$$

## Constraint Qualification: Example 2

When can we characterize solutions by Lagrange multipliers?
Consider the problem minimize $f(\vec{x})=y$,

$$
\begin{aligned}
& g_{1}(\vec{x})=(x-1)^{2}+y^{2}-1=0 \\
& g_{2}(\vec{x})=(x+1)^{2}+y^{2}-1=0
\end{aligned}
$$

At the solution $\quad \vec{x}^{*}=(0,0)^{T}$, we have

$$
\nabla f\left(\vec{x}^{*}\right)=(0,1)^{T}, \quad \nabla g_{1}\left(\vec{x}^{*}\right)=-\nabla g_{2}\left(\vec{x}^{*}\right)=(2,0)^{T}
$$

and again there are no Lagrange multipliers so that

$$
\nabla f\left(\vec{x}^{*}\right)=\vec{\lambda} \cdot \nabla \vec{g}\left(\vec{x}^{*}\right)
$$

## Constraint Qualification: LICQ

## Definition:

We say that at a point $\vec{x}$ the linear independence constraint qualification (LICQ) is satisfied if

$$
\left\{\nabla g_{i}(\vec{x})\right\}_{i=1 \ldots n_{e}}
$$

is a set of $n_{e}$ linearly independent vectors.

Note: This is equivalent to saying that the matrix

$$
A=\left[\begin{array}{c}
{\left[\nabla g_{1}(\vec{x})\right]^{T}} \\
\vdots \\
{\left[\nabla g_{n_{e}}(\vec{x})\right]^{T}}
\end{array}\right]
$$

has full row rank $n_{e}$.

## First-order necessary conditions

## Theorem:

Suppose that $\vec{x}^{*}$ is a local solution of

$$
\begin{aligned}
\text { minimize } f(\vec{x}) & f(\vec{x}): \mathbb{R}^{n} \rightarrow \mathbb{R} \\
\vec{g}(\vec{x})=0, & \vec{g}(\vec{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{e}}
\end{aligned}
$$

and suppose that at this point the LICQ holds. Then there exists a unique Lagrange multiplier vector so that the following conditions are satisfied:

$$
\begin{aligned}
\nabla f(\vec{x})-\vec{\lambda} \cdot \nabla \vec{g}(\vec{x}) & =0 \\
\vec{g}(\vec{x}) & =0
\end{aligned}
$$

Note: - These conditions are often referred to as the Karush-KuhnTucker (KKT) conditions.

- If LICQ does not hold, there may still be a solution, but it may not satisfy the KKT conditions!


## First-order necessary conditions

## Theorem (alternative form):

Suppose that $\vec{x}^{*}$ is a local solution of

$$
\begin{aligned}
\text { minimize } f(\vec{x}) & f(\vec{x}): \mathbb{R}^{n} \rightarrow \mathbb{R} \\
\vec{g}(\vec{x})=0, & \vec{g}(\vec{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{e}}
\end{aligned}
$$

and suppose that at this point the LICQ holds. Then

$$
\nabla f\left(\vec{x}^{*}\right) \cdot \vec{w}=0
$$

for every vector tangential to all constraints,

$$
\vec{w} \in\left\{\vec{v}: \vec{v} \cdot \nabla g_{i}\left(\vec{x}^{*}\right)=0, i=1 \ldots n_{e}\right\}
$$

or equivalently

$$
\vec{w} \in \operatorname{Null}(A)
$$

## Second-order necessary conditions

## Theorem:

Suppose that $\vec{x}^{*}$ is a local solution of

$$
\begin{aligned}
& \text { minimize } f(\vec{x}) \\
& \vec{g}(\vec{x})=0,\vec{g}): \mathbb{R}^{n} \rightarrow \mathbb{R} \\
&\vec{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{e}}
\end{aligned}
$$

and suppose that at this point the first order necessary conditions and the LICQ hold. Then

$$
\vec{w}^{T} \nabla^{2} f\left(\vec{x}^{*}\right) \cdot \vec{w} \geq 0
$$

for every vector tangential to all constraints,

$$
\vec{w} \in \operatorname{Null}(A)
$$

## Second-order sufficient conditions

## Theorem:

Suppose that at a feasible point $\vec{x}$ the first order necessary (KKT) conditions hold. Suppose also that

$$
\vec{w}^{T} \nabla^{2} f(\vec{x}) \cdot \vec{w}>0
$$

for all tangential vectors

$$
\vec{w} \in \operatorname{Null}(A), \quad \vec{w} \neq 0
$$

Then $\vec{x}$ is a strict local minimizer of

$$
\begin{aligned}
\operatorname{minimize} & f(\vec{x}) \\
\vec{g}(\vec{x})=0, & \vec{g}(\vec{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{e}}
\end{aligned}
$$

## Characterizing the null space of $\boldsymbol{A}$

All necessary and sufficient conditions required us to test conditions like

$$
\vec{w}^{T} \nabla^{2} f(\vec{x}) \cdot \vec{w}>0
$$

for all tangential vectors

$$
\vec{w} \in \operatorname{Null}(A), \quad \vec{w} \neq 0
$$

In practice, this can be done as follows:
If LICQ holds, then $\operatorname{dim}(N u l l(A))=n-n_{e}$. Thus, there exist $n-n_{e}$ vectors $z_{\text {, }}$ so that $A z_{1}=0$, and every vector $w$ can be written as

$$
\vec{w}=Z \vec{\omega}, \quad \vec{w} \in \mathbb{R}^{n}, Z=\left[\vec{z}_{1}, \ldots, \vec{z}_{n-n_{e}}\right] \in \mathbb{R}^{n \times n-n_{e}}, \vec{\omega} \in \mathbb{R}^{n-n_{e}}
$$

This matrix $Z$ can be computed from $A$ for example by a $Q R$ decomposition.

## Characterizing the null space of $\boldsymbol{A}$

With this matrix $Z$, the following statements are equivalent:

First order necessary conditions
$\nabla f(\vec{x}) \cdot \vec{w}=0 \quad \forall \vec{w} \in \operatorname{Null}(A)$
$[\nabla f(\vec{x})]^{T} Z=0$

Second order necessary conditions
$\vec{w}^{T} \nabla^{2} f(\vec{x}) \cdot \vec{w} \geq 0 \quad \forall \vec{w} \in \operatorname{Null}(A)$
$Z^{T}\left[\nabla^{2} f(\vec{x})\right] Z$ is positive semidefinite

Second order sufficient conditions
$\vec{w}^{T} \nabla^{2} f(\vec{x}) \cdot \vec{w}>0 \quad \forall \vec{w} \in \operatorname{Null}(A), \quad \vec{w} \neq 0$
$Z^{T}\left[\nabla^{2} f(\vec{x}) \mid Z\right.$ is positive definite

## Part 9

# Quadratic programming 

$$
\begin{aligned}
& \operatorname{minimize} f(x) \\
&=\frac{1}{2} x^{T} G x+d^{T} x+e \\
& g(x)=A x-b=0
\end{aligned}
$$

## Solving equality constrained problems

Consider a general nonlinear program with general nonlinear equality constraints:

$$
\begin{aligned}
\text { minimize } f(x) & f(x): \mathbb{R}^{n} \rightarrow \mathbb{R} \\
g(x)=0, & g(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{e}}
\end{aligned}
$$

Maybe we can solve such problems with an iterative scheme like unconstrained ones?

Analogy: For unconstrained nonlinear programs, we approximate $f(x)$ in each iteration by a quadratic model. For quadratic functions, we can find minima in one step:

$$
\begin{aligned}
& \min _{x} f(x)=\frac{1}{2} x^{T} H x+d^{T} x+e \\
& {\left[\nabla^{2} f\left(x_{0}\right)\right] p_{0}=-\nabla f\left(x_{0}\right) \Leftrightarrow x_{1}=x_{0}-H^{-1}\left(H x_{0}+d\right)=-H^{-1} d}
\end{aligned}
$$

## Solving equality constrained problems

For the general nonlinear constrained problem:
Assuming a condition like LICQ holds, then we know that we need to find points $\{\vec{x}, \vec{\lambda}\}$ at which

$$
\begin{aligned}
\nabla f(\vec{x})-\vec{\lambda} \cdot \nabla \vec{g}(\vec{x}) & =0 \\
\vec{g}(\vec{x}) & =0
\end{aligned}
$$

Alternatively, we can write this as

$$
\nabla_{\{\vec{x}, \vec{\lambda}\}} L(\vec{x}, \vec{\lambda})=0
$$

with

$$
L(\vec{x}, \vec{\lambda})=f(\vec{x})-\vec{\lambda} \cdot \vec{g}(\vec{x}), \quad L: \mathbb{R}^{n} \times \mathbb{R}^{n_{e}} \rightarrow \mathbb{R}
$$

## Solving equality constrained problems

If we combine $z=\{x, \lambda\} \quad$ then this can also be written as

$$
\nabla_{z} L(z)=0
$$

which looks like the first-order necessary condition for minimizing $L(z)$. We then may think of finding solutions as follows:

- Start at a point $z_{0}=\left[x_{0}, \lambda_{0}\right]^{T}$
- Compute search directions using $\left[\nabla_{z}^{2} L\left(z_{k}\right)\right] p_{k}=-\nabla_{z} L\left(z_{k}\right)$
- Compute a step length $\alpha_{k}$
- Update $z_{k+1}=z_{k}+\alpha_{k} p_{k}$

Note: This is misleading, since we will in fact not look for minima of $L(z)$, but for saddle points. Consequently, $\nabla_{z}^{2} L\left(z_{k}\right)$ is indefinite.

## Solving equality constrained problems

The equations we have to solve in each Newton iteration have the form

$$
\left[\nabla_{z}^{2} L\left(z_{k}\right)\right] p_{k}=-\nabla_{z} L\left(z_{k}\right)
$$

Because

$$
L(x, \lambda)=f(x)-\lambda \cdot g(x), \quad L: \mathbb{R}^{n} \times \mathbb{R}^{n_{e}} \rightarrow \mathbb{R}
$$

the equations we have to solve read in component form:

$$
\begin{aligned}
&\left(\begin{array}{cc}
\nabla^{2} f\left(x_{k}\right)-\sum_{i} \lambda_{i, k} \nabla^{2} g_{i}\left(x_{k}\right) & -\nabla g\left(x_{k}\right) \\
-\nabla g\left(x_{k}\right)^{T} & 0
\end{array}\right)\binom{p_{k}^{x}}{p_{k}^{\lambda}}= \\
&=-\binom{\nabla f\left(x_{k}\right)-\sum_{i} \lambda_{i, k} \nabla g_{i}\left(x_{k}\right)}{-g\left(x_{k}\right)}
\end{aligned}
$$

## Linear quadratic programs

Consider first the linear quadratic case with symm. matrix $G$ :

$$
\begin{array}{ll}
f(x)=\frac{1}{2} x^{T} G x+d^{T} x+e, & f: \mathbb{R}^{n} \rightarrow \mathbb{R} \\
g(x)=A x-b, & A \in \mathbb{R}^{n_{e} \times n}, b \in \mathbb{R}^{n_{e}}
\end{array}
$$

with

$$
L(x, \lambda)=f(x)-\lambda^{T} g(x)=\frac{1}{2} x^{T} G x+d^{T} x+e-\lambda^{T}(A x-b)
$$

Then the first search direction needs to satisfy the (linear) set of equations

$$
\left[\nabla_{z}^{2} L\left(z_{0}\right)\right] p_{0}=-\nabla_{z} L\left(z_{0}\right)
$$

or equivalently:

$$
\left(\begin{array}{cc}
G & -A^{T} \\
-A & 0
\end{array}\right)\binom{p_{0}^{x}}{p_{0}^{\lambda}}=-\binom{G x_{0}+d-\lambda_{0}^{T} A}{-\left(A x_{0}-b\right)}
$$

## Linear quadratic programs

Theorem 1: Assume that $G$ is positive definite in all feasible directions, i.e. $Z^{\top} G Z$ is positive definite, and that the matrix $A$ has full row rank. Then the KKT matrix

$$
\left(\begin{array}{cc}
G & -A^{T} \\
-A & 0
\end{array}\right)
$$

is nonsingular and the system

$$
\left(\begin{array}{cc}
G & -A^{T} \\
-A & 0
\end{array}\right)\binom{p_{0}^{x}}{p_{0}^{\lambda}}=-\binom{G x_{0}+d-\lambda_{0}^{T} A}{-\left(A x_{0}-b\right)}
$$

has a unique solution.

## Linear quadratic programs

Theorem 2: Assume that $G$ is positive definite in all feasible directions, i.e. $Z^{\top} G Z$ is positive definite. Then the solution of the linear quadratic program

$$
\begin{aligned}
\min _{x} f(x) & =\frac{1}{2} x^{T} G x+d^{T} x+e \\
g(x) & =A x-b=0
\end{aligned}
$$

is equivalent to the first iterate

$$
x_{1}=x_{0}+p_{0}^{x}
$$

that results from solving the linear system

$$
\left(\begin{array}{cc}
G & -A^{T} \\
-A & 0
\end{array}\right)\binom{p_{0}^{x}}{p_{0}^{\lambda}}=-\binom{G x_{0}+d-\lambda_{0}^{T} A}{-\left(A x_{0}-b\right)}
$$

irrespective of the starting point $x_{0}$.

## Linear quadratic programs

Theorem 3: Assume that $G$ is positive definite in all feasible directions, i.e. $Z^{\top} G Z$ is positive definite, and that the matrix $A$ has full row rank. Then the KKT matrix

$$
\left(\begin{array}{cc}
G & -A^{T} \\
-A & 0
\end{array}\right)
$$

has $n$ positive, $n_{e}$ negative eigenvalues, and no zero eigenvalues. In other words, the KKT matrix is indefinite but non-singular, and the quadratic function

$$
L(x, \lambda)=\frac{1}{2} x^{T} G x+d^{T} x+e-\lambda^{T}(A x-b)
$$

in $\{x, \lambda\}$ has a single stationary point that is a saddle point.

## Part 10

## Sequential Quadratic Programming (SQP)

$$
\begin{aligned}
& \operatorname{minimize} f(x) \\
& g(x)=0
\end{aligned}
$$

## The basic SQP algorithm

For $z=\{x, \lambda\}$, the equality-constrained optimality conditions read

$$
\nabla_{z} L(z)=0
$$

Like in the unconstrained Newton's method, sequential quadratic programming uses the following basic iteration:

- Start at a point $z_{0}=\left[x_{0}, \lambda_{0}\right]^{T}$
- Compute search directions using $\left[\nabla_{z}^{2} L\left(z_{k}\right)\right] p_{k}=-\nabla_{z} L\left(z_{k}\right)$
- Compute a step length $\alpha_{k}$
- Update $z_{k+1}=z_{k}+\alpha_{k} p_{k}$


## Computing the SQP search direction

The equations for the search direction are

$$
\left(\begin{array}{cc}
\left.\begin{array}{cc}
\nabla^{2} f\left(x_{k}\right)-\sum_{i} \lambda_{i, k} \nabla^{2} g_{i}\left(x_{k}\right) & -\nabla g\left(x_{k}\right) \\
-\nabla g\left(x_{k}\right)^{T} & 0
\end{array}\right)\binom{p_{k}^{x}}{p_{k}^{\lambda}}= \\
=-\binom{\nabla f\left(x_{k}\right)-\sum_{i} \lambda_{i, k} \nabla g_{i}\left(x_{k}\right)}{-g\left(x_{k}\right)}
\end{array}\right.
$$

which we will abbreviate as follows:

$$
\left(\begin{array}{cc}
W_{k} & -A_{k} \\
-A_{k}^{T} & 0
\end{array}\right)\binom{p_{k}^{x}}{p_{k}^{\lambda}}=-\binom{\nabla f\left(x_{k}\right)-\sum_{i} \lambda_{i, k} \nabla g_{i}\left(x_{k}\right)}{-g\left(x_{k}\right)}
$$

with

$$
\begin{aligned}
& W_{k}=\nabla_{x}^{2} L\left(x_{k}, \lambda_{k}\right) \\
& A_{k}=\nabla_{x} g\left(x_{k}\right)=-\nabla_{x} \nabla_{\lambda} L\left(x_{k}, \lambda_{k}\right)
\end{aligned}
$$

## Computing the SQP search direction

Theorem 1: Assume that $W$ is positive definite in all feasible directions, i.e. $Z_{k}^{\top} W_{k} Z_{k}$ is positive definite, and that the matrix $A_{k}$ has full row rank. Then the KKT matrix of SQP step $k$

$$
\left(\begin{array}{cc}
W_{k} & -A_{k}^{T} \\
-A_{k} & 0
\end{array}\right)
$$

is nonsingular and the system that determines the SQP search direction

$$
\left(\begin{array}{cc}
W_{k} & -A_{k}^{T} \\
-A_{k} & 0
\end{array}\right)\binom{p_{k}^{x}}{p_{k}^{\lambda}}=-\binom{\nabla_{x} L\left(x_{k}, \lambda_{k}\right)}{-g\left(x_{k}\right)}
$$

has a unique solution.
Proof: Use Theorem 1 from Part 9.
Note: The columns of the matrix $Z_{k}$ span the null space of $A_{k}$.

## Computing the SQP search direction

Theorem 2: The solution of the SQP search direction system

$$
\left(\begin{array}{cc}
W_{k} & -A_{k}^{T} \\
-A_{k} & 0
\end{array}\right)\binom{p_{k}^{x}}{p_{k}^{\lambda}}=-\binom{\nabla_{x} L\left(x_{k}, \lambda_{k}\right)}{-g\left(x_{k}\right)}
$$

equals the minimizer of the problem

$$
\begin{aligned}
\min _{x} & m_{k}\left(p_{k}^{x}\right)=L\left(x_{k}, \lambda_{k}\right)+\nabla_{x} L\left(x_{k}, \lambda_{k}\right)^{T} p_{k}^{x}+\frac{1}{2} p_{k}^{x T} \nabla_{x}^{2} L\left(x_{k}, \lambda_{k}\right) p_{k}^{x} \\
& g\left(x_{k}\right)+\nabla g\left(x_{k}\right)^{T} p_{k}^{x}=0
\end{aligned}
$$

that approximates the original nonlinear equality-constrained minimization problem.

Proof: Essentially just use Theorem 2 from Part 9.
Note: This means that SQP in each step minimizes a quadratic model of the Lagrangian, subject to linearized constraints.

## Computing the SQP search direction

Theorem 3: The SQP iteration with full steps, i.e.

$$
\begin{aligned}
& \left(\begin{array}{cc}
W_{k} & -A_{k}^{T} \\
-A_{k} & 0
\end{array}\right)\binom{p_{k}^{x}}{p_{k}^{\lambda}}=-\binom{\nabla_{x} L\left(x_{k}, \lambda_{k}\right)}{-g\left(x_{k}\right)} \\
& x_{k+1}=x_{k}+p_{k}^{x}, \quad \lambda_{k+1}=\lambda_{k}+p_{k}^{\lambda}
\end{aligned}
$$

converges to the solution of the constrained nonlinear optimization problem with quadratic order if (i) we start close enough to the solution, (ii) the LICQ holds at the solution and (iii) the matrix $Z_{*}^{\top} W_{*} Z_{*}$ is positive definite at the solution.

## How SQP works

## Example 1:

$$
\begin{aligned}
\min f(x) & =\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right) \\
g(x) & =x_{2}+1=0
\end{aligned}
$$



The search direction is then computed using the step

$$
\begin{aligned}
\min m_{k}\left(p_{k}^{x}\right) & =L\left(x_{k}, \lambda_{k}\right)+\binom{x_{1, k}}{x_{2, k}-\lambda_{k}}^{T} p_{k}^{x}+\frac{1}{2} p_{k}^{x T} p_{k}^{x} \\
x_{2, k}+1 & +\binom{0}{1}^{T} p_{k}^{x}=0
\end{aligned}
$$

In other words, the linearized constraint enforces that

$$
p_{2, k}^{x}=-\left(x_{2, k}+1\right) \quad \rightarrow \quad x_{2, k+1}=x_{2, k}+p_{2, k}^{x}=-1
$$

## How SQP works

## Example 2:

$\min f(x)$

$$
g(x)=x_{2}-\sin \left(x_{1}\right)=0
$$

Search direction is then computed by


$$
\begin{aligned}
& \min m_{k}\left(p_{k}^{x}\right) \\
& \qquad x_{2, k}-\sin \left(x_{1, k}\right)+\binom{-\cos \left(x_{1, k}\right)}{1}^{T} p_{k}^{x}=0
\end{aligned}
$$

In particular, if we are currently at ( $0,-2$ ), this enforces

$$
-p_{1, k}+p_{2, k}=2
$$

## How SQP works

## Example 3:

$\min f(x)$

$$
g(x)=0
$$

If constraint is already satisfied at a step, then search direction solves


$$
\begin{aligned}
\min & m_{k}\left(p_{k}^{x}\right) \\
\qquad & g\left(x_{k}\right)+\nabla g\left(x_{k}\right)^{T} p_{k}^{x}=\nabla g\left(x_{k}\right)^{T} p_{k}^{x}=0
\end{aligned}
$$

In other words: The update step can only be tangential to the constraint (along the linearized constraint)!

## Hessian modifications for SQP

The SQP step

$$
\left(\begin{array}{cc}
W_{k} & -A_{k}^{T} \\
-A_{k} & 0
\end{array}\right)\binom{p_{k}^{x}}{p_{k}^{\lambda}}=-\binom{\nabla_{x} L\left(x_{k}, \lambda_{k}\right)}{-g\left(x_{k}\right)}
$$

is equivalent to the minimization problem

$$
\begin{aligned}
\min _{x} & m_{k}\left(p_{k}^{x}\right)=L\left(x_{k}, \lambda_{k}\right)+\nabla_{x} L\left(x_{k}, \lambda_{k}\right)^{T} p_{k}^{x}+\frac{1}{2} p_{k}^{x T} \nabla_{x}^{2} L\left(x_{k}, \lambda_{k}\right) p_{k}^{x} \\
& g\left(x_{k}\right)+\nabla g\left(x_{k}\right)^{T} p_{k}^{x}=0
\end{aligned}
$$

or abbreviated:

$$
\begin{aligned}
\min _{x} & m_{k}\left(p_{k}^{x}\right)=L_{k}+\left(\nabla_{x} f_{k}^{T}-\lambda_{k}^{T} A_{k}\right) p_{k}^{x}+\frac{1}{2} p_{k}^{x T} W_{k} p_{k}^{x} \\
& g\left(x_{k}\right)+A_{k}^{T} p_{k}^{x}=0
\end{aligned}
$$

From this, we may expect to get into trouble if the matrix $Z_{k}^{\top} W_{k} Z_{k}$ is not positive definite.

## Hessian modifications for SQP

If the matrix $Z_{k}^{\top} W_{k} Z_{k}$ in the SQP step

$$
\left(\begin{array}{cc}
W_{k} & -A_{k}^{T} \\
-A_{k} & 0
\end{array}\right)\binom{p_{k}^{x}}{p_{k}^{\lambda}}=-\binom{\nabla_{x} L\left(x_{k}, \lambda_{k}\right)}{-g\left(x_{k}\right)}
$$

is not positive definite, then there may not be a unique solution.

There exist a number of modifications to ensure that an alternative step can be computed that satisfies

$$
\left(\begin{array}{cc}
\tilde{W}_{k} & -A_{k}^{T} \\
-A_{k} & 0
\end{array}\right)\binom{p_{k}^{x}}{p_{k}^{\lambda}}=-\binom{\nabla_{x} L\left(x_{k}, \lambda_{k}\right)}{-g\left(x_{k}\right)}
$$

instead.

## Line search procedures for SQP

Motivation: For unconstrained problems, we used $f(x)$ to measure progress along a direction $p_{k}$ computed from a quadratic model $m_{k}$ that approximates $f(x)$.

Idea: For constrained problems, we could consider $L(z)$ to measure progress along a search direction $p_{k}$ computed using the SQP step based on the model $m_{k}$.

Problem 1: The Lagrangian $L(z)$ is unbounded. E.g., for linear-quadratic problems, $L(z)$ is quadratic of saddle-point form. Indeed, we are now looking for this saddle point of $L$.

Consequence 1: We can't use $L(z)$ to measure progress in line search algorithms.

## Line search procedures for SQP

Motivation: For unconstrained problems, we used $f(x)$ to measure progress along a direction $p_{k}$ computed from a quadratic model $m_{k}$ that approximates $f(x)$.

Idea: For constrained problems, we could consider $L(z)$ to measure progress along a search direction $p_{k}$ computed using the SQP step based on the model $m_{k}$.

Problem 2: Some step lengths may lead to a significant reduction in $f(x)$ but take us far away from constraints $g(x)=0$. Is this better than a step that may increase $f(x)$ but lands on the constraint?

Consequence 2: We need a merit function that balances decrease of $f(x)$ with satisfying the constraint $g(x)$. Wolfgang Bangerth

## Line search procedures for SQP

Solution: Drive step length determination using a merit function that contains both $f(x)$ and $g(x)$.

Examples: Commonly used choices are the $I_{1}$ merit function
with

$$
\phi_{1}(x)=f(x)+\frac{1}{\mu}\|g(x)\|_{1}
$$

$$
\frac{1}{\mu}=\left\|\lambda_{k+1}\right\|_{\infty}+\bar{\delta}, \quad \bar{\delta}>0
$$

or Fletcher's merit function
with

$$
\phi_{F}(x)=f(x)-\lambda(x)^{T} g(x)+\frac{1}{2 \mu}\|g(x)\|^{2}
$$

$$
\lambda(x)=\left[A(x) A(x)^{T}\right]^{-1} A(x) \nabla f(x)
$$

## Line search procedures for SQP

Definition: A merit functions is called exact if the constrained optimizer of the problem

$$
\begin{array}{rl}
\min _{x} & f(x) \\
g(x) & =0
\end{array}
$$

is also a minimizer of the merit function.

Note: Both the $I_{1}$ and Fletcher's merit function

$$
\begin{aligned}
& \phi_{1}(x)=f(x)+\frac{1}{\mu}\|g(x)\|_{1} \\
& \phi_{F}(x)=f(x)-\lambda(x)^{T} g(x)+\frac{1}{2 \mu}\|g(x)\|^{2}
\end{aligned}
$$

are exact for appropriate choices of $\lambda, \mu$.

## Line search procedures for SQP

Theorem 4: The SQP search direction that satisfies

$$
\left(\begin{array}{cc}
W_{k} & -A_{k}^{T} \\
-A_{k} & 0
\end{array}\right)\binom{p_{k}^{x}}{p_{k}^{\lambda}}=-\binom{\nabla_{x} L\left(x_{k}, \lambda_{k}\right)}{-g\left(x_{k}\right)}
$$

is a direction of descent for both the $I_{1}$ as well as Fletcher's merit function if (i) the current point $x_{k}$ is not a stationary point of the equality-constrained problem, and (ii) the matrix $Z_{k}^{\top} W_{k} Z_{k}$ is positive definite.

## A practical SQP algorithm

Algorithm: For $k=0,1,2, \ldots$

- Find a search direction using the KKT system

$$
\left(\begin{array}{cc}
W_{k} & -A_{k}^{T} \\
-A_{k} & 0
\end{array}\right)\binom{p_{k}^{x}}{p_{k}^{\lambda}}=-\binom{\nabla_{x} L\left(x_{k}, \lambda_{k}\right)}{-g\left(x_{k}\right)}
$$

- Determine step length using a backtracking linear search, a merit function and the Wolfe (or Goldstein) conditions:

$$
\begin{aligned}
& \phi\left(x_{k}+\alpha p_{k}^{x}\right) \leq \phi\left(x_{k}\right)+c_{1} \alpha \nabla \phi\left(x_{k}\right) \cdot p_{k}^{x} \\
& \nabla \phi\left(x_{k}+\alpha p_{k}^{x}\right) \cdot p_{k}^{x} \geq c_{2} \nabla \phi\left(x_{k}\right) \cdot p_{k}^{x}
\end{aligned}
$$

- Update the iterate using either

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}^{x}, \quad \lambda_{k+1}=\lambda_{k}+\alpha_{k} p_{k}^{\lambda}
$$

or

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}^{x}, \quad \lambda_{k+1}=\left[A_{k+1} A_{k+1}^{T}\right]^{-1} A_{k+1} \nabla f\left(x_{k+1}\right)
$$

## Parts 8-10

## Summary of methods for equality-constrained Problems

$$
\begin{array}{cl}
\operatorname{minimize} & f(x) \\
& g_{i}(x)=0, \quad i=1, \ldots, n_{e}
\end{array}
$$

## Summary of methods

## Two general methods for equality-constrained problems:

- Penalty methods (e.g. the quadratic penalty method) convert constrained problem into unconstrained one that can be solved with techniques well known.

However, often lead to ill-conditioned problems

- Lagrange multipliers reformulate the problem into one where we look for saddle points of a Lagrangian
- Sequential quadratic programming (SQP) methods solve a sequence of quadratic programs with linear constraints, which are simple to solve
- SQP methods are the most powerful methods.


## Part 11

## Inequality-constrained Problems

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
& g_{i}(x)=0, \quad i=1, \ldots, n_{e} \\
& h_{i}(x) \geq 0, \quad i=1, \ldots, n_{i}
\end{aligned}
$$

## An example

Consider the example of the body suspended from a ceiling with springs, but with an element of fixed minimal length attached to a fixed point:


To find the position of the body we now need to solve the following problem:

$$
\begin{aligned}
\operatorname{minimize} & f(\vec{x})=E(x, z)=\sum_{i} E_{\text {spring }, i}(x, z)+E_{\text {pot }}(x, z) \\
& \left\|\vec{x}-\vec{x}_{0}\right\|-L_{\text {rod }} \geq 0
\end{aligned}
$$

## An example

We can gain some insight into the problem by plotting the energy as a function of $(x, z)$ along with the constraint:


## Definitions

We call this the standard form of inequality constrained problems:

$$
\begin{array}{rl}
\operatorname{minimize}_{x \in D \subset R^{n}} & f(x) \\
& g_{i}(x)=0, \quad i=1 \ldots n_{e} \\
& h_{i}(x) \geq 0, \quad i=1 \ldots n_{i}
\end{array}
$$

We will also frequently write this as follows, implying (in)equality elementwise:

$$
\begin{array}{ll}
\operatorname{minimize}_{x \in D \subset R^{n}} & f(x) \\
& g(x)=0 \\
& h(x) \geq 0
\end{array}
$$

## Definitions

Let $x^{*}$ be the solution of

$$
\begin{array}{rl}
\operatorname{minimize}_{x \in D \subset R^{n}} & f(x) \\
& g_{i}(x)=0, \quad i=1 \ldots n_{e} \\
& h_{i}(x) \geq 0, \quad i=1 \ldots n_{i}
\end{array}
$$

We call a constraint active if it is zero at the solution $x^{*}$ :

- Obviously, all equality constraints are active, since a solution needs to satisfy $g\left(x^{*}\right)=0$
- Some inequality constraints may not be active if it so happens that $h_{i}\left(x^{*}\right)>0$ for some index $i$
- Other inequality constraints may be active if $h_{i}\left(x^{*}\right)=0$

We call the set of all active (equality and inequality) constraints the active set.

## Definitions

Note: If $x^{\star}$ is the solution of

$$
\begin{array}{rl}
\operatorname{minimize}_{x \in D \subset R^{n}} & f(x) \\
& g_{i}(x)=0, \quad i=1 \ldots n_{e} \\
& h_{i}(x) \geq 0, \quad i=1 \ldots n_{i}
\end{array}
$$

then it is also the solution of the problem

$$
\begin{array}{rl}
\operatorname{minimize}_{x \in D \subset R^{n}} & f(x) \\
& g_{i}(x)=0, \quad i=1 \ldots n_{e} \\
& h_{i}(x)=0, \quad i=1 \ldots n_{i}, i \text { is active at } x^{*}
\end{array}
$$

where we have dropped all inactive constraints and made equalities out of all active constraints.

## Definitions

A trivial reformulation of the problem is obtained by defining the feasible set:

$$
\Omega=\left\{x \in R^{n}: g(x)=0, h(x) \geq 0\right\}
$$

Then the original problem is equivalently recast as

$$
\operatorname{minimize}_{x \in D \cap \Omega \subset R^{n}} f(x)
$$

Note 1: This reformulation is not of much practical interest.
Note 2: The feasible set can be continuous or discrete. It can also be empty if the constraints are mutually incompatible. In the following we will always assume that it is continuous and non-empty.

## The quadratic penalty method

Observation: The solution of

$$
\begin{array}{rl}
\operatorname{minimize}_{x \in D \subset R^{n}} & f(x) \\
& g(x)=0 \\
& h(x) \geq 0
\end{array}
$$

must lie within the feasible set.
Idea: Let's relax the constraint and allow to search also where $g(x)$ is small but not zero, or where $h(x)$ is small and negative. However, make sure that the objective function becomes very large if far away from the feasible set:

$$
\operatorname{minimize}_{x \in D \subset R^{n}} Q_{\mu}(x)=f(x)+\frac{1}{2 \mu}\|g(x)\|^{2}+\frac{1}{2 \mu}\left\|[h(x)]^{-}\right\|^{2}
$$

$Q_{\mu}(x)$ is called the quadratic relaxation of the minimization problem. $\mu$ is the penalty parameter, and

$$
[h(x)]^{-}=\min \{0, h(x)\}
$$

## The quadratic penalty method

Replace the original constrained minimization problem
minimize $f(x)$

$$
\begin{array}{ll}
g_{i}(x)=0, & i=1, \ldots, n_{e} \\
h_{i}(x) \geq 0, & i=1, \ldots, n_{i}
\end{array}
$$

by an unconstrained method with a quadratic penalty term:

$$
\operatorname{minimize}_{x \in D \subset R^{n}} Q_{\mu}(x)=f(x)+\frac{1}{2 \mu}\|g(x)\|^{2}+\frac{1}{2 \mu}\left\|[h(x)]^{-}\right\|^{2}
$$



Example:

$$
\begin{aligned}
\operatorname{minimize} & f(x)=\sin (x) \\
& h_{1}(x)=x-0 \geq 0 \\
& h_{2}(x)=1-x \geq 0
\end{aligned}
$$

## The quadratic penalty method

Negative properties of the quadratic penalty method:

- minimizers for finite penalty parameters are usually infeasible;
- problem is becoming more and more ill-conditioned near optimum as penalty parameter is decreased, Hessian large;
- for inequality constrained problems, Hessian not twice differentiable at constraints.


minimize $x_{2}^{2} \quad$ s.t. $g(x)=x_{2}+x_{1}^{2}=0$


## The logarithmic barrier method

Replace the original constrained minimization problem

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
& h_{i}(x) \geq 0, \quad i=1, \ldots, n_{i}
\end{aligned}
$$

by an unconstrained method with a logarithmic barrier term:

$$
\operatorname{minimize}_{x \in D \subset R^{n}} Q_{\mu}(x)=f(x)+\mu \sum_{i=1}^{n_{i}}-\log h_{i}(x)
$$




## The logarithmic barrier method

Properties of successive minimization of

$$
\operatorname{minimize}_{x} Q_{\mu}(x)=f(x)-\mu \sum_{i} \log h_{i}(x)
$$

- intermediate minimizers are feasible, since $Q_{\mu}(x)=\infty$ in the infeasible region; the method is an interior point method.
- $Q$ is smooth if constraints are smooth;
- we need a feasible point as starting point;
- ill-conditioning and inadequacy of Taylor expansion remain;
- $Q_{\mu}(x)$ may be unbounded from below if $h(x)$ unbounded.
- inclusion of equality constraints as before by quadratic penalty method.


## Summary:

This is an efficient method for the solution of constrained

## Algorithms for penalty/barrier methods

Algorithm (exactly as for the equality constrained case):
Given $x_{0}^{\text {start }},\left\{\mu_{t}\right\} \rightarrow 0,\left\{\mathrm{~T}_{t}\right\} \rightarrow 0$
For $\mathrm{t}=0,1,2, \ldots$ :
Find approximation $\tilde{x}_{t}^{*}$ to the (unconstrained) mimizer $x_{t}^{*}$
of $Q_{\mu_{t}}(x)$ that satisfies

$$
\left\|\nabla Q_{\mu_{t}}\left(\tilde{x}_{t}^{*}\right)\right\| \leq \tau_{t}
$$

using $\quad x_{t}^{\text {start }}$ as starting point.
Set $t=t+1, \quad x_{t}^{\text {start }}=\tilde{x}_{t-1}^{*}$

Typical values:

$$
\begin{aligned}
& \mu_{t}=c \mu_{t-1}, \quad c=0.1 \text { to } 0.5 \\
& \tau_{t}=c \tau_{t-1}
\end{aligned}
$$

## The exact penalty method

Previous methods suffered from the fact that minimizers of $Q_{\mu}(x)$ for finite $\mu$ are not optima of the original problem. Solution: Use
$\operatorname{minimize}_{x} \quad \phi_{\mu}^{1}(x)=f(x)+\frac{1}{\mu}\left[\sum_{i}\left|g_{i}(x)\right|+\sum_{i}\left|\left[h_{i}(x)\right]^{-}\right|\right]$

minimize $f(x)=\sin (x)$
s.t. $x \geq 0, \quad x \leq 1$


Wolfgang Bangerth

## The exact penalty method

Properties of the exact penalty method:

- for sufficiently small penalty parameter, the optimum of the modified problem is the optimum of the original one;
- possibly only one iteration in the penalty parameter needed if size of $\mu$ is known in advance;
- this is a non-smooth problem!

This is an efficient method
if (but only if!) a solver for nonsmooth problems is available!

## Part 12

## Theory of <br> Inequality-Constrained Problems

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
& g_{i}(x)=0, \quad i=1, \ldots, n_{e} \\
& h_{i}(x) \geq 0, \quad i=1, \ldots, n_{i}
\end{aligned}
$$

## Lagrange multipliers

Consider a (single) constraint $h(x)$ as a function for all $x$ :

$$
h(\vec{x})=\left\|\vec{x}-\vec{x}_{0}\right\|-L_{\mathrm{rod}} \geq 0
$$

## Lagrange multipliers

Now look at the objective function $f(x)$ :


## Lagrange multipliers

Both $f(x), \boldsymbol{h}(x)$ for the case of a rod of minimal length 20 cm :


## Lagrange multipliers

Could this be a solution $x^{*}$ ?


Answer: No - moving into the feasible direction would also reduce $f(x)$.

Rather, the solution will equal the unconstrained one, and the inequality constraint will be inactive at the solution. Wolfgang Bangerth

## Lagrange multipliers

Both $f(x), \boldsymbol{h}(x)$ for the case of a rod of minimal length 35 cm :


## Lagrange multipliers

Could this be a solution $x^{*}$ ?


Answer: Yes - moving into feasible direction would increase $f(x)$.
Note: The gradients of $h$ and $f$ are parallel and in the same direction.

## Lagrange multipliers

## Conclusion:

- Solution can be where the constraint is not active
- If the constraint is active at the solution: gradients of $f$ and $h$ are parallel, but not antiparallel

In mathematical terms: The (local) solutions of

$$
\begin{aligned}
\text { minimize } & f(\vec{x})=E(x, z)=\sum_{i} E_{\text {spring }, i}(x, z)+E_{\text {pot }}(x, z) \\
& h(\vec{x})=\left\|\vec{x}-\vec{x}_{0}\right\|-L_{\text {rod }} \geq 0
\end{aligned}
$$

are where one of the following conditions hold for some $\lambda, \mu$ :

| $\nabla f(x)-\mu \cdot \nabla h(x)$ | $=0$ |
| :--- | :--- |
| $h(x)$ | $=0$ |
| $\mu$ | $\geq 0$ |

$$
\begin{aligned}
& \nabla f(x)=0 \\
& h(x)>0
\end{aligned}
$$

## Lagrange multipliers

Conclusion, take 2: Solutions are where either

$$
\begin{array}{llll}
\nabla f(x)-\mu \cdot \nabla h(x) & =0 & & \nabla f(x)=0 \\
h(x) & =0 & \text { or } & h(x)>0 \\
\mu & \geq 0 & &
\end{array}
$$

which could also be written like so:

$$
\left.\begin{array}{rlll}
\nabla f(x)-\mu \cdot \nabla h(x) & =0 & & \nabla f(x)-\mu \cdot \nabla h(x)
\end{array}\right)=0
$$

(constraint is active)
(constraint is inactive)

## Lagrange multipliers

Conclusion, take 3: Solutions are where

$$
\begin{array}{llll}
\nabla f(x)-\mu \cdot \nabla h(x) & =0 & \nabla f(x)-\mu \cdot \nabla h(x) & =0 \\
h(x) & =0 & \text { or } & h(x) \\
\mu & \geq 0 & \mu & =0 \\
\mu & & =0
\end{array}
$$

or written differently:

$$
\begin{array}{ll}
\nabla f(x)-\mu \cdot \nabla h(x) & =0 \\
h(x) & \geq 0 \\
\mu & \geq 0 \\
\mu h(x) & =0
\end{array}
$$

Note: The last condition is called complementarity.

## Lagrange multipliers

## Same idea, but with two minimum length elements:



## Lagrange multipliers

Could this be a solution $x^{*}$ ?

z

Answer: No - moving into feasible direction would decrease $f(x)$. Note: The gradient of $f$ is antiparallel to the gradient of $h_{1} . h_{2}$ is an inactive constraint so doesn't matter here.

## Lagrange multipliers

## Same idea, but with two different minimum length elements:



## Lagrange multipliers

Could this be a solution $x^{*}$ ?


Answer: Yes - moving into feasible direction would increase $f(x)$.
Note: The gradient of $f$ is a linear combination (with positive multiples) of the gradients of $h_{1}$ and $h_{2}$.

## Constraint Qualification: LICQ

## Definition:

We say that at a point $x$ the linear independence constraint qualification (LICQ) is satisfied if

$$
\left\{\nabla g_{i}(x)\right\}_{i=1 \ldots n_{e}},\left\{\nabla h_{i}(x)\right\}_{i=1 \ldots n_{i} i} \text { active at } x
$$

is a set of linearly independent vectors.

Note: This is equivalent to saying that the matrix of gradients of all active constraints, ${ }^{1}$

$$
A=\left|\begin{array}{c}
{\left[\nabla g_{1}(x)\right]^{T}} \\
\vdots \\
{\left[\nabla g_{n_{e}}(x)\right]^{T}} \\
{\left[\nabla h_{\text {firstactive } i}(x)\right]^{T}} \\
\vdots \\
{\left[\nabla h_{\text {last active } i}(x)\right]^{T}}
\end{array}\right|
$$

has full row rank (i.e. its rank is
$n_{e}+\#$ of active ineq. constraints).

## First-order necessary conditions

## Theorem:

Suppose that $x^{*}$ is a local solution of

$$
\begin{array}{rlrl}
\operatorname{minimize} & f(x) & & f(x): \mathbb{R}^{n} \rightarrow \mathbb{R} \\
g(x) & =0, & g(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{e}} \\
h(x) \geq 0, & h(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{i}}
\end{array}
$$

and suppose that at this point the LICQ holds. Then there exist unique Lagrange multipliers so that these conditions are satisfied:

$$
\begin{array}{cc}
\nabla f(x)-\lambda \cdot \nabla g(x)-\mu \cdot \nabla h(x)=0 \\
g(x) & =0 \\
h(x) & \geq 0 \\
\mu & \geq 0 \\
\mu_{i} h_{i}(x) & =0
\end{array}
$$

Note: These are often called the Karush-Kuhn-Tucker (KKT) conditions.

## First-order necessary conditions

Note: By introducing a Lagrangian

$$
L(x, \lambda, \mu)=f(x)-\lambda^{T} g(x)-\mu^{T} h(x)
$$

the first two of the necessary conditions

$$
\begin{array}{cc}
\nabla f(x)-\lambda \cdot \nabla g(x)-\mu \cdot \nabla h(x)=0 \\
g(x) & =0 \\
h(x) & \geq 0 \\
\mu & \geq 0 \\
\mu_{i} h_{i}(x) & =0
\end{array}
$$

follow from requiring that $\nabla_{z} L(z)$ with $z=\{x, \lambda, \mu\}$, but not the rest.

Consequence: We can not hope to find simple Newton-based methods like SQP to solve inequality-constrained problems.

## First-order necessary conditions

Note: The necessary conditions

$$
\begin{array}{cc}
\nabla f(x)-\lambda \cdot \nabla g(x)-\mu \cdot \nabla h(x)=0 \\
g(x) & =0 \\
h(x) & \geq 0 \\
\mu & \geq 0 \\
\mu_{i} h_{i}(x) & =0
\end{array}
$$

imply that at $x^{*}$ there is a unique set of (active) Lagrange multipliers so that

$$
\nabla f(x)=A^{T}\left([\mu]_{\text {active }}^{\lambda}\right)
$$

where $A$ is the matrix of gradients of active constraints. An alternative way of saying this is

$$
\nabla f(x) \in \operatorname{span}(\text { rows of }(A))
$$

However, the opposite is not true: Multipliers must also satisfy

$$
\mu_{i} \geq 0
$$

## First-order necessary conditions

A more refined analysis: Consider the constraints

$$
h_{1}(x)=x_{2}-a x_{1} \geq 0, \quad h_{2}(x)=x_{2}+a x_{1} \geq 0
$$



Intuitively (consider the isocontours), the vertex point $x^{\star}$ is optimal if the direction of steepest ascent $\nabla f(x)$ is a member of the family of red vectors above. That is, let $F_{0}$ be the cone

$$
F_{0}\left(x^{*}\right)=\left\{w \in \mathbb{R}^{n}: w=\mu_{1} \nabla h_{1}\left(x^{*}\right)+\mu_{2} \nabla h_{2}\left(x^{*}\right), \mu_{1} \geq 0, \mu_{2} \geq 0\right\}
$$

Then $x^{*}$ is optimal if

$$
\nabla f\left(x^{*}\right) \in F_{0}\left(x^{*}\right)
$$

## First-order necessary conditions

A more refined analysis: Consider the constraints

$$
h_{1}(x)=x_{2}-a x_{1} \geq 0, \quad h_{2}(x)=x_{2}+a x_{1} \geq 0
$$



Note: We can write things slightly different if we define

$$
F_{1}\left(x^{*}\right)=\left\{w \in \mathbb{R}^{n}: w^{T} a \geq 0 \forall a \in F_{0}\left(x^{*}\right)\right\}
$$

i.e. the set of vectors that form angles less than 90 degrees with all vectors in $F_{0}$. This set can also be written as

$$
F_{1}\left(x^{*}\right)=\left\{w \in \mathbb{R}^{n}: w^{T} \nabla h_{1}\left(x^{*}\right) \geq 0, w^{T} \nabla h_{2}\left(x^{*}\right) \geq 0\right\}
$$

## First-order necessary conditions

A more refined analysis: If the problem also has equality
constraints

$$
g(x)=0, \quad h_{1}(x) \geq 0, \quad h_{2}(x) \geq 0
$$

all of which are active at $x^{*}$, then the cone $F_{1}$ is

$$
F_{1}\left(x^{*}\right)=\left\{w \in \mathbb{R}^{n}: w^{T} \nabla g\left(x^{*}\right)=0, w^{T} \nabla h_{1}\left(x^{*}\right) \geq 0, w^{T} \nabla h_{2}\left(x^{*}\right) \geq 0\right\}
$$

In general:
$F_{1}\left(x^{*}\right)=\left\{\begin{aligned} w \in \mathbb{R}^{n}: w^{T} \nabla g_{i}\left(x^{*}\right)=0, & i=1, \ldots, n_{e} \\ w^{T} \nabla h_{i}\left(x^{*}\right) \geq 0, & i=1, \ldots, n_{i}, \text { constraint } i \text { is active at } x^{*}\end{aligned}\right\}$

Note: This is the cone of all feasible directions.

## First-order necessary conditions

Theorem (a different version of the first order necessary conditions): If $x^{*}$ is a local solution and if the LICQ hold at this point, then

$$
\nabla f\left(x^{*}\right)^{T} w \geq 0 \quad \forall w \in F_{1}\left(x^{*}\right)
$$

In other words: Whatever direction $w$ in $F_{1}$ we go into from $x^{\star}$, the objective function to first order stays constant or increases.

Note: This is a necessary condition, but not sufficient. If $f(x)$ stays constant to first order it may still decrease in higher order Taylor terms to make $x^{*}$ a local maximum or saddle point. But, if $x^{*}$ is a solution, then the condition above has to be satisfied.

## Second-order necessary conditions

## Definition:

Let $x^{*}$ be a local solution of an inequality constrained problem satisfying

$$
\begin{array}{rlrl}
\nabla f(x)-\lambda \cdot \nabla g(x)-\mu \cdot \nabla g(x) & =0 & & \\
g_{i}(x) & & 0, & \\
h_{i}(x) & & i=1 \ldots n_{e} \\
\mu_{i} & & & i=1 \ldots n_{i} \\
\mu_{i} h_{i}(x) & & & i=1 \ldots n_{i} \\
& & 0, & \\
& i=1 \ldots n_{i}
\end{array}
$$

We say that strict complementarity holds if for each inequality constraint $i$ exactly one of the following conditions is true:

- $\mu_{i}=0$
- $h_{i}\left(x^{*}\right)=0$

In other words, we require that the Lagrange multiplier is nonzero for all active inequality constraints.

## Second-order necessary conditions

## Definition:

Let $x^{*}$ be a local solution and assume that strict complementarity holds. Then define as before
$F_{1}\left(x^{*}\right)=\left\{\begin{aligned} w \in \mathbb{R}^{n}: w^{T} \nabla g_{i}\left(x^{*}\right)=0, & i=1, \ldots, n_{e} \\ w^{T} \nabla h_{i}\left(x^{*}\right) \geq 0, & \quad i=1, \ldots, n_{i}, \text { constraint } i \text { is active at } x^{*}\end{aligned}\right\}$
and the subspace of all tangential directions as

$$
F_{2}\left(x^{*}\right)=\left\{\begin{aligned}
& w \in \mathbb{R}^{n}: w^{T} \nabla g_{i}\left(x^{*}\right)=0, \quad i=1, \ldots, n_{e} \\
& w^{T} \nabla h_{i}\left(x^{*}\right)=0, i=1, \ldots, n_{i}, \text { constraint } i \text { is active at } x^{*}
\end{aligned}\right\}
$$



## Second-order necessary conditions

## Note:

The subspace of all tangential directions

$$
F_{2}\left(x^{*}\right)=\left\{\begin{aligned}
& w \in \mathbb{R}^{n}: w^{T} \nabla g_{i}\left(x^{*}\right)=0, \quad i=1, \ldots, n_{e} \\
& w^{T} \nabla h_{i}\left(x^{*}\right)=0, \quad i=1, \ldots, n_{i}, \text { constraint } i \text { is active at } x^{*}
\end{aligned}\right\}
$$

can be empty (i.e. contain only the zero vector) if $n$ or more constraints are active at $x^{*}$.

## Example:



Here, $F_{1}$ is a nonempty set, but
$F_{2}$ contains only the zero vector.

## Second-order necessary conditions

## Theorem (necessary conditions):

Let $x^{*}$ be a local solution that satisfies the first order necessary conditions with unique Lagrange multipliers. Assume that strict complementarity holds. Then

$$
\begin{aligned}
& w^{T} \nabla_{x}^{2} L\left(x^{*}, \lambda *, \mu *\right) w= \\
& \quad=w^{T}\left[\nabla_{x}^{2} f\left(x^{*}\right)-\lambda^{*} \nabla_{x}^{2} g\left(x^{*}\right)-\mu^{*} \nabla_{x}^{2} h\left(x^{*}\right)\right] w \geq 0
\end{aligned}
$$

$$
\forall w \in F_{2}\left(x^{*}\right)
$$

Note: This means that $f(x)$ can not "curve down" to second order along tangential directions. The first order Conditions imply that it doesn't "slope" in these directions.


## Second-order sufficient conditions

## Theorem (sufficient conditions):

Let $x^{*}$ be a local solution that satisfies the first order necessary conditions with unique Lagrange multipliers. Assume that strict complementarity holds. Then

$$
\begin{aligned}
& w^{T} \nabla_{x}^{2} L\left(x^{*}, \lambda^{*}, \mu^{*}\right) w= \\
& =w^{T}\left[\nabla_{x}^{2} f\left(x^{*}\right)-\lambda^{*^{T}} \nabla_{x}^{2} g\left(x^{*}\right)-\mu^{*} \nabla_{x}^{2} h\left(x^{*}\right)\right] w
\end{aligned} \begin{array}{ll}
> & 0 \\
& \forall w \in F_{2}\left(x^{*}\right), w \neq 0
\end{array}
$$

Note: This means that $f(x)$ actually "curves up" in a neighborhood of $x^{*}$, at least in tangential directions!

For all other directions, we know that $f(x)$ slopes up from the first order necessary conditions.

## Second-order sufficient conditions

## Remark:

If strict complementarity holds, then the definition

$$
F_{2}\left(x^{*}\right)=\left\{\begin{aligned}
w \in \mathbb{R}^{n}: w^{T} \nabla g_{i}\left(x^{*}\right)=0, \quad i=1, \ldots, n_{e} \\
w^{T} \nabla h_{i}\left(x^{*}\right)=0, \quad i=1, \ldots, n_{i}, \text { constraint } i \text { is active at } x^{*}
\end{aligned}\right\}
$$

is equivalent to

$$
F_{2}\left(x^{*}\right)=\operatorname{null} A\left(x^{*}\right)
$$

with the matrix of gradients of active constraints $A$. If $A$ does have a null space, then the second order necessary and sufficient conditions can also be written as

$$
\begin{aligned}
& Z^{T} \nabla_{x}^{2} L\left(x^{*}, \lambda^{*}, \mu^{*}\right) Z \text { is positive semidefinite } \\
& Z^{T} \nabla_{x}^{2} L\left(x^{*}, \lambda^{*}, \mu^{*}\right) Z \text { is positive definite }
\end{aligned}
$$

respectively, where the columns of $Z$ are a basis of the null space of $A$.

## Second-order necessary conditions

## Definition (if strict complementarity does not hold):

Let $x^{*}$ be a local solution at which the KKT conditions with unique Lagrange multiplier hold. Then define

$$
F_{2}\left(x^{*}, \mu^{*}\right)=\left\{\begin{array}{r}
w \in \mathbb{R}^{n}: w^{T} \nabla g_{i}\left(x^{*}\right)=0, \quad i=1, \ldots, n_{e} \\
w^{T} \nabla h_{i}\left(x^{*}\right)=0, \quad i=1, \ldots, n_{i}, \text { constraint } i \text { active and } \mu_{i}^{*}>0 \\
w^{T} \nabla h_{i}\left(x^{*}\right) \geq 0, \quad i=1, \ldots, n_{i}, \text { constraint } i \text { active and } \mu_{i}^{*}=0
\end{array}\right\}
$$



## Second-order sufficient conditions

Theorem (sufficient conditions w/o strict complementarity):
Let $x^{*}$ be a local solution that satisfies the first order necessary conditions with unique Lagrange multipliers. Assume that strict complementarity does not hold. Then

$$
\begin{aligned}
& w^{T} \nabla_{x}^{2} L\left(x^{*}, \lambda *, \mu *\right) w= \\
& \quad=w^{T}\left[\nabla_{x}^{2} f\left(x^{*}\right)-\lambda^{*} \nabla_{x}^{2} g\left(x^{*}\right)-\mu^{*} \nabla_{x}^{2} h\left(x^{*}\right)\right] w>0
\end{aligned}
$$

$$
\forall w \in F_{2}(x *)
$$

Note: This now means that $f(x)$ actually "curves up" in a neighborhood of $x^{*}$, at least in tangential directions plus all those directions for which we can't infer anything from the first order conditions!


## Part 13

## Active Set Methods for Convex Quadratic Programs

minimize $f(x)=\frac{1}{2} x^{T} G x+x^{T} d+e$

$$
\begin{array}{ll}
g_{i}(x)=a_{i}^{T} x-b_{i}=0, & i=1, \ldots, n_{e} \\
h_{i}(x)=\alpha_{i}^{T} x-\beta_{i} \geq 0, & i=1, \ldots, n_{i}
\end{array}
$$

## General idea

## Note:

Recall that if $W^{*}$ is the set of active (equality and inequality) constraints at the solution $x^{\star}$ then the solution of

$$
\begin{aligned}
& \operatorname{minimize} f(x)=\frac{1}{2} x^{T} G x+x^{T} d+e \\
& \qquad \begin{array}{ll}
g_{i}(x)=a_{i}^{T} x-b_{i}=0, \quad i=1, \ldots, n_{e} \\
h_{i}(x)=\alpha_{i}^{T} x-\beta_{i} \geq 0, \quad i=1, \ldots, n_{i}
\end{array}
\end{aligned}
$$

equals the solution of the following QP:

$$
\begin{aligned}
& \operatorname{minimize} f(x)=\frac{1}{2} x^{T} G x+x^{T} d+e \\
& g_{i}(x)=a_{i}^{T} x-b_{i}=0, \quad i=1, \ldots, n_{e} \\
& h_{i}(x)=\alpha_{i}^{T} x-\beta_{i}=0, \quad i=1, \ldots, n_{i}, i \in W^{*}
\end{aligned}
$$

## General idea

## Definition: Let

$A=\left(\begin{array}{c}a_{1}^{T} \\ \vdots \\ a_{n_{e}}^{T} \\ \alpha_{1}^{T} \\ \vdots \\ \alpha_{n_{i}}^{T}\end{array}\right) \quad B=\left.\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{n_{e}} \\ \beta_{1} \\ \vdots \\ \beta_{n_{i}}\end{array}\right) \quad A\right|_{W}=\left.\left(\begin{array}{c}a_{1}^{T} \\ \vdots \\ a_{n_{e}}^{T} \\ \alpha_{\text {first inequality in } W}^{T} \\ \vdots \\ \alpha_{\text {last inequality in } W}^{T}\end{array}\right) \quad B\right|_{W}=\left(\left.\begin{array}{c}b_{1} \\ \vdots \\ b_{n_{e}} \\ \beta_{\text {first inequality in } W} \\ \vdots \\ \beta_{\text {last inequality in } W}\end{array} \right\rvert\,\right.$
then the solution of the inequality-constrained QP equals the solution of the following QP:

$$
\begin{gathered}
\operatorname{minimize} \\
f(x)=\frac{1}{2} x^{T} G x+x^{T} d+e \\
\left.A\right|_{W^{*}} x-\left.B\right|_{W^{*}}=0
\end{gathered}
$$

## General idea

Consequence: If we knew the active set $W^{*}$ at the solution, we could just solve the linearly constrained QP

$$
\begin{gathered}
\operatorname{minimize} \\
f(x)=\frac{1}{2} x^{T} G x+x^{T} d+e \\
\left.A\right|_{W^{*}} x-\left.B\right|_{W^{*}}=0
\end{gathered}
$$

and be done in one step.

Problem: Knowing the exact active set $W^{*}$ requires knowing the solution $x^{*}$ because $W^{*}$ is the set of all equality constraints plus those constraints for which

$$
h_{i}\left(x^{*}\right)=0
$$

Solution: Solve a sequence of QPs using working sets $W_{k}$ that we iteratively refine until we have the exact active set $W^{*}$.

## The active set algorithm

## Algorithm:

- Choose initial working set $W_{0}$ and feasible point $x_{0}$
- For k=0, 1, 2, ....:
- Find search direction $p_{k}$ from $x_{k}$ to the solution $x_{k+1}$ of the QP

$$
\begin{gathered}
\operatorname{minimize} \\
f(x)=\frac{1}{2} x^{T} G x+x^{T} d+e \\
\left.A\right|_{W_{k}} x-\left.B\right|_{W_{k}}=0
\end{gathered}
$$

- If $p_{k}=0$ and all $\mu_{i} \geq 0$ for constraints in $W_{k}$ then stop
- Else if $p_{k}=0$ but there are $\mu_{i}<0$, then drop inequality with the most negative $\mu_{i}$ from $W_{k}$ to obtain $W_{k+1}$
- Else if $x_{k}+p_{k}$ is feasible then set $x_{k+1}=x_{k}+p_{k}$
- Otherwise, set $x_{k+1}=x_{k}+\alpha_{k} p_{k}$ with $\alpha_{k}=\min \left\{1, \min _{i \notin W_{k}, \alpha_{i}^{T} p_{k}<0} \frac{\beta_{i}-\alpha_{i}^{T} x_{k}}{\alpha_{i}^{T} p_{k}}\right\}$ and add the most blocking constraint to $W_{k+1}$


## The active set algorithm

## Example:

minimize $f(x)=\left(x_{1}-1\right)^{2}+\left(x_{2}-2.5\right)^{2}$

$$
\left|\begin{array}{cc}
1 & -2 \\
-1 & -2 \\
-1 & 2 \\
1 & 0 \\
0 & 1
\end{array}\right| x-\left(\left.\begin{array}{c}
-2 \\
-6 \\
-2 \\
0 \\
0
\end{array} \right\rvert\, \geq 0\right.
$$



Choose as initial working set $W_{0}=\{3,5\}$ and as starting point $x_{0}=(2,0)^{\top}$.

## The active set algorithm

## Example: Step 0

$W_{0}=\{3,5\}, x_{0}=(2,0)^{\top}$.


Then: $p_{0}=(0,0)^{\top}$ because no other point is feasible for $W_{0}$

$$
\nabla f\left(x_{0}\right)-\left.\left.\mu\right|_{W_{0}} ^{T} A\right|_{W_{0}}=\binom{2}{-5}-\binom{\mu_{3}}{\mu_{5}}^{T}\left(\begin{array}{cc}
-1 & 2 \\
0 & 1
\end{array}\right)=0 \text { implies }\binom{\mu_{3}}{\mu_{5}}=\binom{-2}{-1}
$$

Consequently: $W_{1}=\{5\}, x_{1}=(2,0)^{\top}$.

## The active set algorithm

## Example: Step 1

$W_{1}=\{5\}, x_{1}=(2,0)^{T}$.


Then: $p_{1}=(-1,0)^{\top}$ leads to minimum along only active constraint.
There are no blocking constraints to get to the point $x_{k+1}=x_{k}+p_{k}$

Consequently: $W_{2}=\{5\}, x_{2}=(1,0)^{\top}$.

## The active set algorithm

## Example: Step 2

$W_{2}=\{5\}, x_{2}=(1,0)^{\top}$.


Then: $p_{2}=(0,0)^{\top}$ because we are at minimum of active constraints.

$$
\nabla f\left(x_{2}\right)-\left.\left.\mu\right|_{W_{2}} ^{T} A\right|_{W_{2}}=\binom{0}{-5}-\left(\mu_{5}\right)^{T}\left(\begin{array}{ll}
0 & 1
\end{array}\right)=0 \quad \text { implies } \quad\left(\mu_{5}\right)=(-5)
$$

Consequently: $W_{3}=\{ \}, x_{3}=(1,0)^{\top}$.

## The active set algorithm

## Example: Step 3

$W_{3}=\{ \}, x_{3}=(1,0)^{T}$.


Then: $p_{3}=(0,2.5)^{T}$ but this leads out of feasible region. The first blocking constraint is inequality 1 , and the maximal step length is

$$
\alpha_{3}=0.6
$$

Consequently: $W_{4}=\{1\}, x_{4}=(1,1.5)^{\top}$.

## The active set algorithm

Example: Step 4
$W_{4}=\{1\}, x_{4}=(1,1.5)^{T}$.


Then: $p_{4}=(0.4,0.2)^{T}$ is the minimizer along the sole constraint.
There are no blocking constraints to get there.

Consequently: $W_{5}=\{1\}, x_{5}=(1.4,1.7)^{\top}$.

## The active set algorithm

## Example: Step 5

$W_{5}=\{1\}, x_{5}=(1,4,1.7)^{\top}$.


Then: $p_{5}=(0,0)^{\top}$ because we are already on the minimizer on the constraint. Furthermore,

$$
\nabla f\left(x_{5}\right)-\left.\left.\mu\right|_{W_{s}} ^{T} A\right|_{W_{s}}=\binom{0.8}{-1.6}-\left(\mu_{1}\right)^{T}\left(\begin{array}{ll}
1 & -2)=0 \text { implies } \quad\left(\mu_{1}\right)=(0.8) \geq 0
\end{array}\right.
$$

Consequently: This is the solution.

## The active set algorithm

## Theorem:

If $G$ is strictly positive definite (i.e. the objective function is strictly convex), then $W_{k} \neq W$, for $k \neq I$.
Consequently (because there are only finitely many possible working sets), the active set algorithm terminates in a finite number of steps.

## Note:

In practice it may be that $G$ is indefinite, and that for some iterations the matrix $Z_{k}{ }^{\top} G Z_{k}$ is indefinite as well. We know that at the solution, $Z_{*}^{\top} G Z_{\star}$ is positive semidefinite, however. In that case, we can't guarantee termination or convergence.

There are, however, Hessian modification techniques to deal with this situation.

## The active set algorithm

## Remark:

In the active set method, we only change the working set $W_{k}$ by at most one element in each iteration.

One may be tempted to remove all constraints with negative Lagrange multipliers at once, or add several constraints at the same time when they become active.

However, we can then no longer guarantee that $W_{k} \neq W_{\text {, }}$ for $k \neq 1$ and cycling may happen, i.e. we cycle between the same points and sets $x_{k}, W_{k}$.

## Active set SQP methods for general nonlinear problems

For equality constrained problems of the form

$$
\begin{aligned}
\text { minimize } & f(x) \\
g(x)=0, & g(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \\
& g(x) \rightarrow \mathbb{R}^{n_{e}}
\end{aligned}
$$

we used the SQP method. It repeatedly solves linear-quadratic problems of the form

$$
\begin{aligned}
\min _{x} & m_{k}\left(p_{k}^{x}\right)=L\left(x_{k}, \lambda_{k}\right)+\nabla_{x} L\left(x_{k}, \lambda_{k}\right)^{T} p_{k}^{x}+\frac{1}{2} p_{k}^{x T} \nabla_{x}^{2} L\left(x_{k}, \lambda_{k}\right) p_{k}^{x} \\
& g\left(x_{k}\right)+\nabla g\left(x_{k}\right)^{T} p_{k}^{x}=0
\end{aligned}
$$

Here, each subproblem (a single SQP step) could be solved in one iteration by solving a saddle point linear system.

## Active set SQP methods for general nonlinear problems

For inequality constrained problems of the form

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
& g_{i}(x)=0, \quad i=1, \ldots, n_{e} \\
& h_{i}(x) \geq 0, \quad i=1, \ldots, n_{i}
\end{aligned}
$$

we repeatedly solve linear-quadratic problems of the form

$$
\begin{gathered}
\min _{x} m_{k}\left(p_{k}^{x}\right)=L\left(x_{k}, \lambda_{k}\right)+\nabla_{x} L\left(x_{k}, \lambda_{k}\right)^{T} p_{k}^{x}+\frac{1}{2} p_{k}^{x T} \nabla_{x}^{2} L\left(x_{k}, \lambda_{k}\right) p_{k}^{x} \\
g\left(x_{k}\right)+\nabla g\left(x_{k}\right)^{T} p_{k}^{x}=0 \\
h\left(x_{k}\right)+\nabla h\left(x_{k}\right)^{T} p_{k}^{x} \geq 0
\end{gathered}
$$

Each of these inequality constrained quadratic problems can be solved using the active set method, and after we have the exact solution of this approximate problem we can re-linearize around this point for the next sub-problem.

## Active set SQP methods for general nonlinear problems

Note: Each time we solve a problem like

$$
\begin{aligned}
\min _{x} & m_{k}\left(p_{k}^{x}\right)=L\left(x_{k}, \lambda_{k}\right)+\nabla_{x} L\left(x_{k}, \lambda_{k}\right)^{T} p_{k}^{x}+\frac{1}{2} p_{k}^{x T} \nabla_{x}^{2} L\left(x_{k}, \lambda_{k}\right) p_{k}^{x} \\
& g\left(x_{k}\right)+\nabla g\left(x_{k}\right)^{T} p_{k}^{x}=0 \\
& h\left(x_{k}\right)+\nabla h\left(x_{k}\right)^{T} p_{k}^{x} \geq 0
\end{aligned}
$$

we have to do several active set iterations, though we can start with the previous step's final working set and solution point.

Nevertheless, this is not going to be cheap, though it is comparable to iterating over penalty/barrier parameters.

## Parts 11-13

## Summary of methods for inequality-constrained problems

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
& g_{i}(x)=0, \quad i=1, \ldots, n_{e} \\
& h_{i}(x) \geq 0, \quad i=1, \ldots, n_{i}
\end{aligned}
$$

## Summary of methods

## Two approaches to inequality-constrained problems:

- Penalty/barrier methods:

Convert the constrained problem into an unconstrained one that can be solved with known techniques.

Barrier methods ensure that intermediate iterates remain feasible with respect to inequality constraints

- Lagrange multiplier formulations lead to active set methods
- Both kinds of methods are expensive. Penalty/barrier methods are simpler to implement but can only find minima located at the boundary of the feasible set at the price of dealing with ill-conditioned problems.


## Part 14

## Global optimization

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
& g_{i}(x)=0, \quad i=1, \ldots, n_{e} \\
& h_{i}(x) \geq 0, \quad i=1, \ldots, n_{i}
\end{aligned}
$$

## Motivation

What should we do when asked to find the (global) minimum of functions like this:


## A naïve sampling approach



Naïve approach: Sample at $M-b y-M$ points and choose the one with the smallest value.

Alternatively: Start Newton's method at each of these points to get higher accuracy.

Problem: If we have $n$ variables, then we would have to start at $M^{n}$ points. This becomes prohibitive for large $n$ !

## Monte Carlo sampling

## A better strategy ("Monte Carlo" sampling):

- Start with a feasible point $x_{0}$
- For $k=0,1,2, \ldots$ :
- Choose a trial point $x_{t}$
- If $f\left(x_{t}\right) \leq f\left(x_{k}\right)$ then $x_{k+1}=x_{t} \quad$ [accept the sample]
- Else:
. draw a random number $s$ in $[0,1]$
. if
then

$$
\exp \left[-\frac{f\left(x_{t}\right)-f\left(x_{k}\right)}{T}\right] \geq s
$$

$$
x_{k+1}=x_{t}
$$

[accept the sample]
else

$$
x_{k+1}=x_{k}
$$

## Monte Carlo sampling

Example: The first 200 sample points


## Monte Carlo sampling

## Example: The first 10,000 sample points



## Monte Carlo sampling

## Example: The first 100,000 sample points



## Monte Carlo sampling

Example: Locations and values of the first $10^{5}$ sample points


## Monte Carlo sampling

Example: Values of the first 100,000 sample points


Note: The exact minimal value is $-1.1032 \ldots$. In the first 100,000 samples, we have 24 with values $f(x)<-1.103$.

## Monte Carlo sampling

## How to choose the constant $T$ :

- If $T$ is chosen too small, then the condition

$$
\exp \left[-\frac{f\left(x_{t}\right)-f\left(x_{k}\right)}{T}\right] \geq s, \quad s \in U([0,1])
$$

will lead to frequent rejections of sample points for which $f(x)$ increases.
Consequently, we will get stuck in local minima for long periods of time before we accept a sequence of steps that gets "us over the hump".

- On the other hand, if $T$ is chosen too large, then we will accept nearly every sample, irrespective of $f\left(x_{t}\right)$. Consequently, we will perform a random walk that is no more efficient than uniform sampling.


## Monte Carlo sampling

Example: First 100,000 samples, $T=0.1$


## Monte Carlo sampling

## Example: First 100,000 samples, $T=1$



## Monte Carlo sampling

## Example: First 100,000 samples, $T=10$



## Monte Carlo sampling

Strategy: Choose $T$ large enough that there is a reasonable probability to get out of local minima; but small enough that this doesn't happen too often.

Example: For $f(x)=\frac{1}{20}\left(x_{1}^{2}+x_{2}^{2}\right)+\cos \left(x_{1}\right)+\cos \left(x_{2}\right)$
the difference in function value between local minima and saddle points is around 2 . We want to choose $T$ so that

$$
\exp \left[-\frac{\Delta f}{T}\right] \geq s, \quad s \in U([0,1])
$$

is true maybe $10 \%$ of the time.
This is the case for $T=0.87$.

## Monte Carlo sampling

## How to choose the next sample $x_{t}$ :

- If $x_{t}$ is chosen independently of $x_{k}$ then we just sample the entire domain, without exploring areas where $f(x)$ is small. Consequently, we should choose $x_{t}$ "close" to $x_{k}$.
- If we choose $x_{t}$ too close to $x_{k}$ we will have a hard time exploring a significant part of the feasible region.
- If we choose $x_{t}$ in an area around $x_{k}$ that is too large, then we don't adequately explore areas where $f(x)$ is small.

Common strategy: Choose

$$
x_{t}=x_{k}+\sigma y, \quad y \in N(0, I) \text { or } U\left([-1,1]^{n}\right)
$$

where $\sigma$ is a fraction of the diameter of the domain or the distance between local minima.

## Monte Carlo sampling

Example: First 100,000 samples, $T=1, \sigma=0.05$


## Monte Carlo sampling

## Example: First 100,000 samples, $T=1, \sigma=0.25$



## Monte Carlo sampling

## Example: First 100,000 samples, $T=1, \sigma=1$



## Monte Carlo sampling

## Example: First 100,000 samples, $T=1, \sigma=4$



## Monte Carlo sampling with constraints

## Inequality constraints:

- For simple inequality constraints, modify sample generation strategy to never generate infeasible trial samples
- For complex inequality constraints, always reject samples for which

$$
h_{i}\left(x_{t}\right)<0 \quad \text { for at least one } i
$$

## Monte Carlo sampling with constraints

## Inequality constraints:

- For simple inequality constraints, modify the sample generation strategy to never generate infeasible trial samples
- For complex inequality constraints, always reject samples:
- If $Q\left(x_{t}\right) \leq Q\left(x_{k}\right)$ then $x_{k+1}=x_{t}$
- Else:
. draw a random number $s$ in $[0,1]$
. if
then

$$
\exp \left[-\frac{Q\left(x_{t}\right)-Q\left(x_{k}\right)}{T}\right] \geq s
$$

$$
x_{k+1}=x_{t}
$$

else

$$
x_{k+1}=x_{k}
$$

where

$$
Q(x)=\infty \text { if at least one } h_{i}(x)<0, \quad Q(x)=f(x) \text { otherwise }
$$

## Monte Carlo sampling with constraints

## Equality constraints:

- Generate only samples that satisfy equality constraints
- If we have only linear equality constraints of the form

$$
g(x)=A x-b=0
$$

then one way to guarantee this is to generate samples using

$$
x_{t}=x_{k}+\sigma Z y, \quad y \in \mathbb{R}^{n-n_{e}}, \quad y=N(0, I) \text { or } U\left([-1,1]^{n-n_{e}}\right)
$$

where $Z$ is the null space matrix of $A$, i.e. $A Z=0$.

## Monte Carlo sampling

## Theorem:

Let $A$ be a subset of the feasible region. Under certain conditions on the sample generation strategy, then as $k \rightarrow \infty$ we have

$$
\text { number of samples } x_{k} \in A \propto \int_{A} e^{-\frac{f(x)}{T}} d x
$$

That is: Every region $A$ will be adequately sampled over time. Areas around the global minimum will be better sampled than other regions.

In particular,

$$
\text { fraction of samples } x_{k} \in A=\frac{1}{C} \int_{A} e^{-\frac{f(x)}{T}} d x+O\left(\frac{1}{\sqrt{N}}\right)
$$

## Monte Carlo sampling

## Remark:

Monte Carlo sampling appears to be a strategy that bounces around randomly, only taking into account the values (not the derivatives) of $f(x)$.

However, that is not so if sample generation strategy and $T$ are chosen carefully: Then we choose a new sample moderately close to the previous one, and we always accept it if $f(x)$ is reduced, whereas we only sometimes accept it if $f(x)$ is increased by this step.

In other words: On average we still move in the direction of steepest descent!

## Monte Carlo sampling

## Remark:

Monte Carlo sampling appears to be a strategy that bounces around randomly, only taking into account the values (not the derivatives) of $f(x)$.

However, that is not so - because it compares function values.

That said: One can accelerate the Monte Carlo method by choosing samples from a distribution that is biased towards the negative gradient direction if the gradient is cheap to compute.

Such methods are sometimes called Langevin samplers.

## Simulated Annealing

## Motivation:

Particles in a gas, or atoms in a crystal have an energy that is on average in equilibrium with the rest of the system. At any given time, however, its energy may be higher or lower.

In particular, the probability that its energy is $E$ is

$$
P(E) \propto e^{-\frac{E}{k_{B} T}}
$$

Where $k_{B}$ is the Boltzmann constant. Likewise, probability that a particle can overcome an energy barrier of height $\Delta E$ is

$$
P(E \rightarrow E+\Delta E) \propto \min \left\{1, e^{\left.-\frac{\Delta E}{k_{B} T}\right\}}=\left\{\begin{array}{c}
1 \text { if } \Delta E \leq 0 \\
-\frac{\Delta E}{e^{k_{B} T}} \text { if } \Delta E>0
\end{array}\right\}\right.
$$

This is exactly the Monte Carlo transition probability if we identify

$$
E=f k_{B}
$$

## Simulated Annealing

## Motivation:

In other words, Monte Carlo sampling is analogous to watching particles bounce around in a potential $f(x)$ when driven by a gas at constant temperature.

On the other hand, we know that if we slowly reduce the temperature of a system, it will end up in the ground state with very high probability. For example, slowly reducing the temperature of a melt results in a perfect crystal. (On the other hand, reducing the temperature too quickly results in a glass.)

The Simulated Annealing algorithm uses this analogy by using the modified transition probability

$$
\exp \left[-\frac{f\left(x_{t}\right)-f\left(x_{k}\right)}{T_{k}}\right] \geq s, \quad s \in U([0,1]), \quad T_{k} \rightarrow 0 \text { as } k \rightarrow \infty
$$

## Simulated Annealing

Example: First 100,000 samples, $\sigma=0.25$

$T=1$


$$
T_{k}=\frac{1}{1+10^{-4} k}
$$

## Simulated Annealing

Example: First 100,000 samples, $\sigma=0.25$


$$
T=1
$$

24 samples with $f(x)<-1.103$


$$
T_{k}=\frac{1}{1+10^{-4} k}
$$

192 samples with $f(x)<-1.103$

## Simulated Annealing

Convergence: First 1,500 samples, $f(x)=\sum_{i=1}^{2} \frac{1}{20} x_{i}^{2}+\cos \left(x_{i}\right)$


$$
T=1
$$



$$
T_{k}=\frac{1}{1+0.005 k}
$$

(Green line indicates the lowest function value found so far)

## Simulated Annealing

Convergence: First 10,000 samples, $f(x)=\sum_{i=1}^{10} \frac{1}{20} x_{i}^{2}+\cos \left(x_{i}\right)$


(Green line indicates the lowest function value found so far)

## Simulated Annealing

## Discussion:

Simulated Annealing is often more efficient in finding global minima because it initially explores the energy landscape at large, and later on explores the areas of low energy in greater detail.

On the other hand, there is now another knob to play with (namely how we reduce the temperature):

- If the temperature is reduced too fast, we may get stuck in local minima (the "glass" state)
- If the temperature is not reduced fast enough, the algorithm is no better than Monte Carlo sampling and may require many many samples.


## Very Fast Simulated Annealing (VFSA)

## A further refinement:

In Very Fast Simulated Annealing we not only reduce temperature over time, but also reduce the search radius of our sample generation strategy, i.e. we compute

$$
x_{t}=x_{k}+\sigma_{k} y, \quad y \in N(0, I) \text { or } U\left([-1,1]^{n}\right)
$$

and let

$$
\sigma_{k} \rightarrow 0
$$

Like reducing the temperature, this ensures that we sample the vicinity of minima better and better over time.

Remark: To guarantee that the algorithm can reach any point in the search domain, we need to choose $\sigma_{k}$ so that

$$
\sum_{k=0}^{\infty} \sigma_{k}=\infty
$$

## Genetic Algorithms (GA)

## An entirely different idea:

Choose a set ("population") of $N$ points ("individuals")
$P_{0}=\left\{x_{1}, \ldots x_{N}\right\}$
For $k=0,1,2, \ldots$ ("generations"):

- Copy those $N_{f}<N$ individuals in $P_{k}$ with the smallest $f(x)$ (i.e. the "fittest individuals") into $P_{k+1}$
- While $\# P_{k+1}<N$ :
- select two individuals ("parents") $x_{a}, x_{b}$ from among the first $N_{f}$ individuals in $P_{k+1}$ with probabilities proportional to $e^{-f\left(x_{i}\right) / T}$
- create a new point $x_{\text {new }}$ from $x_{a}, x_{b}$ ("mating")
- perform some random changes on $x_{\text {new }}$ ("mutation")
- add it to $P_{k+1}$


## Genetic Algorithms (GA)

Example: Populations at $k=0,1,2,5,10,20, N=500, N_{s}=2 / 3 \mathrm{~N}$


## Genetic Algorithms (GA)

Convergence: Values of the $N$ samples for all generations $k$

$f(x)=\sum_{i=1}^{2} \frac{1}{20} x_{i}^{2}+\cos \left(x_{i}\right)$


$$
f(x)=\sum_{i=1}^{10} \frac{1}{20} x_{i}^{2}+\cos \left(x_{i}\right)
$$

## Genetic Algorithms (GA)

## Mating:

- Mating is meant to produce new individuals that share the traits of the two parents
- If the variable $x$ encodes real values, then mating could just take the mean value of the parents:

$$
x_{\text {new }}=\frac{x_{a}+x_{b}}{2}
$$

- For more general properties (paths through cities, which of $M$ objects to put where in a suitcase, ...) we have to encode $x$ in a binary string. Mating may then select bits (or bit sequences) randomly from each of the parents
- There is a huge variety of encoding and selection strategies in the literature.


## Genetic Algorithms (GA)

## Mutation:

- Mutations are meant to introduce an element of randomness into the process, to explore search directions that aren't represented yet in the population
- If the variable $x$ represents real values, we can just add a small random value to $x$ to simulate mutations

$$
x_{\text {new }}=\frac{x_{a}+x_{b}}{2}+\epsilon y, \quad y \in \mathbb{R}^{n}, \quad y=N(0, I)
$$

- For more general properties, mutations can be introduced by randomly flipping individual bits or bit sequences in the encoded properties
- There is a huge variety of mutation strategies in the literature.


## Part 14

## Summary of global optimization methods

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
& g_{i}(x)=0, \quad i=1, \ldots, n_{e} \\
& h_{i}(x) \geq 0, \quad i=1, \ldots, n_{i}
\end{aligned}
$$

## Summary of methods

- Global optimization problems with many minima are difficult because of the curse of dimensionality: the number of places where a minimum could be becomes very large if the number of dimensions becomes large
- There is a large zoo of methods for these kinds of problems
- Most algorithms are stochastic to sample feasible region
- Algorithms also work for non-smooth problems
- Most methods are not very effective (if one counts number of function evaluations) in return for the ability to get out of local minima
- Global optimization algorithms should never be used whenever we know that the problem has only a small number of minima and/or is smooth and convex

