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Part 23

Optimal Control: Examples
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Definition of optimal control problems
Commonly understood definition of optimal control 
problems:
Let

● X a space of time-dependent functions
● Q a space of control parameters, time dependent or not
●                  a continuous functional on X and Q
●                  continuous operator on X mapping into a space Y
●                  continuous operator on X mapping into a space Z

x

●                  continuous operator on Q mapping into a space Z
q

Then the problem

is called an optimal control problem.

f :X×Qℝ

L :X×QY
g : XZ x

min x=x  t ∈X , q∈Q   f x  t  ,q
such that           L x t  ,q =0        ∀ t∈[ t i , t f ]
                         gx t     ≥0        ∀ t∈[t i , t f ]
                         hq         ≥0

h:QZ q
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Definition of optimal control problems
Remark:

For existence and uniqueness of solutions of the problem

one will need convexity properties of f,L,g,h.

In order to state optimality conditions, we will in general also 
require certain differentiability properties.

min x=x  t ∈X , q∈Q   f x  t  ,q
such that           L x t  ,q =0        ∀ t∈[ ti , t f ]
                         gx t     ≥0        ∀ t∈[t i , t f ]
                         hq         ≥0
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Example 1: Trajectory planning
The trajectory of the Cassini space probe from Earth to Saturn:

Goal: We want to get from A to B using the least amount of fuel, 
in the least amount of time, ..., subject to Newton's law.
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Example 1: Trajectory planning
Version 1: Minimal energy trajectory

●

●

●

●

●

●

Then the problem is as follows:

f :Qℝ

L :X×QY ,      Y=H−1 [0,T ]3=H 1 [0,T ]3 
*

g : XZ x=ℝ
3
×ℝ

3

min x=x  t ∈X , q∈Q   ∫0

T
∣ut ∣

such that           mẍ  t −ku t=0                  ∀ t∈[0,T ]
                         x 0=Earth ,     x T =Saturn
                         umax−∣ut ∣        ≥0        ∀ t∈[0,T ]

h:QZ q=L
∞
[0,T ]

3

X={x  t : x∈H
1
[0,T ]

3
}={x t  : x t ∈L

2
[0,T ]

3
, ẋ t ∈L

2
 0,T 

3
}

Q={u t  :u∈L
∞
[0,T ]

3
} ⊂ L

2
[0,T ]

3
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Example 1: Trajectory planning
Remark 1:

A more realistic formulation would take into account that the 
mass of the space ship diminishes as fuel is burnt:

Remark 2:

The formulation on the previous page is nonlinear because of 
the absolute values |u(t)|.  The objective function can be made 
linear by using the following reparameterisation:

On the other hand, the ODE constraint will then be nonlinear (a 
complication that is usually easier to handle).

m=m  t=m 0−∫0

t
∣ut ∣

u t=u t  t  ,        u t∈ℝ0

,     ∈S

2
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Example 1: Trajectory planning
Version 2: Minimal time trajectory

●

●

●

●

●

●

Then the problem is as follows:

f :Qℝ

L :X×QY

g : XZ x=ℝ
3
×ℝ

3

min x=x  t ∈X , q∈Q   T
such that           mẍ  t −ku t=0                  ∀ t∈[0,T ]
                         x 0=Earth ,     x T =Saturn
                         umax−∣ut ∣        ≥0        ∀ t∈[0,T ]

h:QZ q=L
∞
[0,T ]

3

X=H
1
[0,T ]

3

Q=[u t , T ]=L
∞
[0,T ]

3
×ℝ0
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Example 1: Trajectory planning
Version 3: Minimal thrust requirement trajectory

●

●

●

●

●

●

Then the problem is as follows:

f :Qℝ

L :X×QY

g : XZ x=ℝ
3
×ℝ

3

min x=x  t ∈X , q∈Q   umax

such that           mẍ  t −ku t=0                  ∀ t∈[0,T ]
                         x 0=Earth ,     x T =Saturn
                         umax−∣ut ∣        ≥0        ∀ t∈[0,T ]

h:QZ q=L
∞
[0,T ]

3

X=H
1
[0,T ]

3

Q=[u t , umax ]=L
∞
[0,T ]

3
×ℝ0
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Example 1: Trajectory planning
Remark 1: Similar problems appear in planning the paths of

● mobile robots

● air planes, manned or unmanned

● the arms of stationary robots (e.g. welding robots on 
assembly lines)

● braking a car without exceeding the maximal force the tires 
can transmit to the road

Remark 2: For some problems, T=∞. These are called infinite 
horizon problems. 

Example: Keeping a satellite or airship stationary at a given 
point above earth.
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Example 2: Chemical reactors
State: 
Concentrations x

i
(t) of 

chemical species i=1...N.

Controls:
Pressure p(t), temperature 
T(t).

Goals:

● Maximize output of a 
particular species

● Maximize purity

● Minimize cost

● Minimize time
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Example 2: Chemical reactors
Version 1: Maximize yield of species N

min x t  , p t , T  t    −xN T 
such that          ẋ  t−f x t , p t ,T  t=0          ∀ t∈[0,T ]
                        x 0=x0

                        p0≤pt ≤p1 ,   T 0≤T  t ≤T 1        ∀ t∈[0, T ]



153

Example 2: Chemical reactors
Version 2: Minimize reaction time, subject to minimum yield 
constraints:

min x t  , p t , T  t    T
such that          ẋ  t−f x t , p t ,T  t=0          ∀ t∈[0,T ]
                        x 0=x0

                        p0≤pt ≤p1 ,   T 0≤T  t ≤T 1        ∀ t∈[0,T ]
                        xN≥x N ,min
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Example 2: Chemical reactors
Version 3: Minimize cost due to heat losses (heat loss factor 
alpha) and due to the cost of changing temperature by cooling/ 
heating (cost factor beta), subject to minimum yield constraints:

min x t  , p t , T  t    ∫0

T

T t ∣Ṫ t ∣

such that          ẋ  t−f x t , p t ,T  t=0          ∀ t∈[0,T ]
                        x 0=x0

                        p0≤pt ≤p1 ,   T 0≤T  t ≤T 1        ∀ t∈[0,T ]
                        xN≥x N ,min
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Part 24

Optimal control:
The shooting method
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The solution operator
Definition:
State and control variables are connected by an ODE:

Let x(t) be the solution for a given set of control variables q. 
Then define

In other words: S is the operator that given controls and initial 
data provides the value of the corresponding solution of the ODE 
at time t. We call S the solution operator.
Note: If the ODE is complicated, then S is a purely theoretical 
construct, though it can be approximated numerically.

ẋ t −f x  t , q=0        ∀ t∈[ti , t f]
                 x t i=g x0 ,q

S q , x0 ,t i ,t  :=x  t
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The solution operator
Corollary:
Consider the optimal control problem

It is equivalent to the problem

Note 1: Similar reformulations are trivially available if the 
objective function has a different form or if there are constraints.
Note 2: If we can represent S and its derivatives, then we can 
apply Newton's method (or any other optimization method) to the 
reformulated problem.

min x  t  ,q  
1
2
x  t f −xdesired

2

              ẋ t −f  x t  ,q=0        ∀ t∈[t i , t f ]
              x t i=g x0 ,q

min q  
1
2

S q , x0 ,t i ,t f −xdesired 
2



158

The shooting method
Algorithm:
Start from the formulation:

The shooting method is an iterative procedure with the following 
steps:

● Start with a certain control value q
● Compute the trajectory  S(q,...)  for this control value
● If we “overshoot” the goal, then do the same again with a 

smaller value of q
● If we “undershoot” the goal, try a larger value of q
● Iterate until we have the solution we were looking for

minq  
1
2

S q , x0 , t i ,t f −xdesired 
2
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The shooting method: An example
Example: Charged particles in a magnetic field
Charged particles moving in a magnetic field follow the Lorentz 
force:

Here: 
– e  charge of the particle
– B(x(t),t) magnetic field at x(t) and t
Assume the direction of B(x,t) is constant but that the magnitude 
is adjustable. 
Goal: Given x(0), d/dt x(0), find B for which x(t) passes through 
location x

desired
.

Formulation:

m ẍ t =e ẋ t ×B x t , t

min x t  , B ,T  
1
2
x T −xdesired

2

              m ẍ t −e x t ×B=0
              x 0=x0

              ẋ 0=v0
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The shooting method: An example
Example: Charged particles in a magnetic field
For

and if B is in z-direction, the exact trajectory is:

where

Then the solution operator is:

m ẍ t =e ẋ t ×B ,        x 0=0,   ẋ 0= 0
v0


S B , 0,t =r 1−cost
sint 

x t =r 1−cos t
sin t 

r=
mv0

e∥B∥
,  =

v0

r
=
e∥B∥
m
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The shooting method: An example
Example: Charged particles in a magnetic field
Now: Restate the original problem

as:

Note: This is a nonlinear optimization problem in two variables 
(B,T) that we can solve with any of the usual methods.

min x t  , B ,T  
1
2
x T −xdesired

2

              m ẍ t −e x t ×B=0
              x 0=x0

              ẋ 0=v0

min B, T  
1
2

SB , 0,T −xdesired 
2
  =  

1
2 r 1−cosT

sinT −xdesired 
2
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The shooting method: Practical implementation

min x  t  ,q  F x t  ,q
              ẋ t −f  x t  ,q=0        ∀ t∈[t i , t f ]
              x t i=g x0 ,q
              hq≥0

min q  F Sq, x0 , ti ,t  ,q
         hq≥0

Consider the optimal control problem with control 
constraints:

It is equivalent to the problem

Using the techniques we know (e.g. the active set method, 
barrier methods, etc), we can solve this problem. 
However: We need first and second derivatives of F with 
respect to q!
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The shooting method: Computing derivatives

d
d qi

F Sq, x0 , ti , t , q                                                                          

        =∇ sF S q , x0 ,t i , t  ,q
d
d qi

S q , x0 , t i ,t 
∂
∂q i

F Sq, x0 ,t i ,t  ,q

S q , x0 ,t i ,t =x t 

By the chain rule, we have

That is, to compute derivatives of F, we need derivatives of S.  
To compute these, remember that

where x(t)=x
q
(t) solves the ODE for the given q:

ẋ t −f x  t , q=0        ∀ t∈[t i ,t f]
                 x t i=gx0 , q
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The shooting method: Computing derivatives

d
d q i

Sq , x0 ,t i ,t =lim 0

S qe i , x0 ,t i , t −Sq , x0 ,t i , t 



By definition:

Consequently, we can approximate derivatives using the formula

for a finite δ>0. Note that x
q
(t) and x

q+δei
(t) solve the ODEs

ẋq t −f xq t  ,q=0       
                       xq t i=g x0 ,q

d
d q i

Sq , x0 , t i , t ≈
S qe i , x0 , t i , t −Sq, x0 , t i , t 


=
xq ei

 t −xq t 



ẋq e it −f xq e i
t  ,q ei=0                     

                     x
q ei

 t i=g x0 ,q ei
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The shooting method: Computing derivatives

∇ q F Sq, x0 , t i , t  ,q
Corollary:
To compute                                      we need to compute

For             , this requires the solution of n+1 ordinary differential 
equations:

● For the given q:

● Perturbed in directions i=1...n:

ẋq t −f xq t  ,q=0       
                       xq t i=g x0 ,q

ẋq ei
 t − f xq e i

t  , qe i=0                     

                          xq ei
t i=g x0 ,qei

∇ q Sq, x0 , t i , t 

q∈ℝn
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The shooting method: Computing derivatives

Practical considerations 1:
When computing finite difference approximations

how should we choose the step length δ?

δ must be small enough to yield a good approximation to the 
exact derivative but large enough so that floating point roundoff 
does not affect the accuracy!

Rule of thumb: If
●     is the precision of floating point numbers
●     is a typical size of the ith control variable q

i

then choose               .

d
d q i

Sq , x0 ,t i , t ≈
S q e i , x0 , t i , t −Sq, x0 , t i , t 


=
xq ei

 t −xq t 





qi
= q i
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The shooting method: Computing derivatives

Practical considerations 2:
The one-sided finite difference quotient

is only first order accurate in δ, i.e.

d
d q i

Sq , x0 ,t i , t ≈
S q e i , x0 , t i , t −Sq, x0 , t i , t 


=
xq ei

 t −xq t 



∣ dd qi S q , x0 , t i , t −
Sqe i , x0 , t i , t −Sq, x0 , t i , t

 ∣=O  
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The shooting method: Computing derivatives

Practical considerations 2:
Improvement: Use two-sided finite difference quotients

which is second order accurate in δ, i.e.

Note:
The cost for this higher accuracy is 2n+1 ODE solves!

d
d q i

Sq , x0 ,t i , t ≈
Sq ei , x0 , t i , t −S q− ei , x0 , t i , t 

2
=
xq e i

t −xq− ei
 t 

2 

∣ dd qi S q , x0 , t i , t −
Sqe i , x0 , t i , t −Sq−e i ,x0 , t i , t

2 ∣=O 2 
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The shooting method: Computing derivatives

Practical considerations 3:
Approximating derivatives requires solving the ODEs

If we can do that analytically, then good.

If we do this numerically, then numerical approximation 
introduces systematic errors related to

● the numerical method used
● the time mesh (i.e. the collection of time step sizes) chosen

ẋq t −f xq t  ,q=0       
                       xq t i=g x0 ,q

ẋq e it −f xq e i
t  ,q ei=0           i=1... n

                   x
qe i

t i=g x0 ,q ei
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The shooting method: Computing derivatives

Practical considerations 3:
We gain the highest accuracy in the numerical solution of 
equations like

by choosing sophisticated adaptive time step, extrapolating 
multistep ODE integrators (e.g. RK45).

On the other hand, to get the best accuracy in evaluating

experience shows that we should use predictable integrators for 
all variables                       and use 

● the same numerical method
● the same time steps
● no extrapolation

ẋq t −f xq t  ,q=0       
                       xq t i=g x0 ,q

d
d q i

Sq , x0 , t i , t ≈
xq e i

t −xq t 



xq t , xq ei
t 
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The shooting method: Computing derivatives

Practical considerations 3:
Thus, to solve the ODEs

it is useful to solve them all at once as

ẋq t −f xq t  ,q=0       
                       xq t i=g x0 ,q

ẋq e it −f xq e i
t  ,q ei=0                     

                     x
q ei

 t i=g x0 ,q ei

d
dt 

xq t 
xq1e1

 t

⋮
x
qnen

 t−
f xq t  ,q

f xq1e 1
t , q1e1

⋮
f x

qnen
 t , qnen

=0                           

                                          
xq t i

xq 1e1
t i

⋮
x
q nen

t i
=

g x0 , q

gx0 ,q1e1

⋮
gx0 ,qn en
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The shooting method: Computing derivatives

Practical considerations 4:
For BFGS, we only need 1st derivatives of F(S(q),q). For a full 
Newton method we also need

Again use finite difference methods:

Note: The cost for this operation is 3n ODE solves.

d2

dq i
2
Sq ,x0 , t i , t ,

d2

dqi dq j

Sq, x0 , t i , t 

d2

dq i
2
S (q , x0 , t i , t )≈

xq +δ ei (t )−xq(t)
δ −

xq(t)−xq−δ ei
(t )

δ
δ

=
xq+δe i(t )−2xq (t )+ xq−δe i

(t )

δ2

d2

dq i dq j
S (q , x0 , t i , t)≈

xq+δ e i+δ e j(t)−xq−δ ei+δe j
(t)

2 δ
−
xq +δ ei−δ e j

(t)−xq−δ ei−δe j
(t )

2δ
2 δ
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The shooting method: Practical implementation

min x  t  ,q  F x t  ,q
              ẋ t −f  x t  ,q=0        ∀ t∈[t i , t f ]
              x t i=g x0 ,q
              hq≥0

min q  F Sq, x0 , ti ,t  ,q
         hq≥0

Algorithm:
To solve

reformulate it as

Solve it using a known technique where
● by the chain rule

and similarly for second derivatives
● the quantities                                                       are 

approximated by finite difference quotients by solving multiple 
ODEs for different values of the control variable q

∇ q F S, q=FS S, q∇ qSq, x0 , t i , t F qS ,q

∇ q Sq , x0 , t i , t  ,∇q
2S q , x0 , t i ,t 



174

The shooting method: Practical implementation

Implementation (Newton method without line search; no 
attempt to compute ODE and its derivatives in synch):

function f(double[N] q) → double;

function grad_f(double[N] q) → double[N];
function grad_grad_f(double[N] q) → double[N][N];

function newton(double[N] q) → double[N] 
{

do {
double[N] dq = - invert(grad_grad_f(q)) * grad_f(q);
q = q + dq;

} while (norm(grad_f(x)) > 1e-12);         // for example
return q;

}
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The shooting method: Practical implementation

Implementation (objective function only depends on x(t
f
)):

function S(double[N] q, double t) → double[M]

{

double[M] x = x0;
double time = ti;

while (time<t) {
               // explicit Euler method with fixed dt

x = x + dt * rhs(x,q);
time = time + dt;

}

return x;
}

function f(double[N] q) → double
{

return objective_function(S(q, tf),q);

}
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The shooting method: Practical implementation

Implementation (one-sided finite difference quotient):

function grad_f(double[N] q) → double[N]
{

double[N] df = 0;
for (i=1...N) {

delta = 1e-8 * typical_q[i];
double[N] q_plus = q;
q_plus[i] = q[i] + delta;
df[i] = (f(q_plus) – f(q)) / delta;

}
return df;

}
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Part 25

Optimal control:
The multiple shooting method
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Motivation

ẋ t−f x t , q=0        ∀ t∈[t i , t f ]
                 x t i=gx0 ,q

S q , x0 , t i , t =xq t 

In the shooting method, we need to evaluate and differentiate 
the function

where x
q
(t) solves the ODE

Observation:
If the time interval [t

i
,t

f
] is “long”, then S is often a strongly 

nonlinear function of q.

Consequence:
It is difficult to approximate S and derivatives numerically since 
errors grow like eLT, where L is a Lipschitz constant of S and 
T=t

f
-t

i
.
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Idea

Observation:
If the time interval [t

i
,t

f
] is “long”, then S is often a strongly 

nonlinear function of q.

But then S should be less nonlinear on smaller intervals!

Idea:
While S(q,x

0
,t

i
,t

f
) is a strongly nonlinear function of q, we could 

introduce
t
i 
= t

0 
< t

1 
< … <  t

k
 < … <  t

K 
= t

f

and the functions S(q,x
k
,t

k
,t

k+1
) should be less nonlinear and 

therefore simpler to approximate or differentiate numerically!
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Multiple shooting

Outline:
To solve

replace this problem by the following:

min x  t  ,q  F x t  ,q
              ẋ t −f  x t  ,q=0        ∀ t∈[t i ,t f ]
              x t i=g x0 ,q
              hq≥0

min x 1
(t ), x 2

(t ) ,... , xK (t ) ,q  F (x (t) ,q)

    where   x (t):=x k(t)                     ∀ t∈[tk −1 , t k]

such that  ẋ1 (t )− f ( x1 (t ) ,q)=0        ∀ t∈[ t0, t1]

                x1
(t i)=g (x0 , q)

                ẋk (t )− f ( xk (t ) , q)=0        ∀ t∈[t k−1 , tk ] ,k=2... K

                xk (t k−1)=x
k−1(tk−1)

                h(q)≥0
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Multiple shooting

Outline:
In this formulation, every xk depends explicitly on xk-1. We can 
decouple this:

Note: The “defect constraints”                           need not be 
satisfied in intermediate iterations of Newton's method. They will 
only be satisfied at the solution, forcing x(t) to be continuous.

min
x

1
(t ), x

2
(t ) ,... , x

K
(t ) , x̂0,

1
... , x̂0,

K
q
 F (x (t ), q)

    where   x (t):=x
k
(t)                     ∀ t∈[tk −1 , t k]

such that  ẋk (t)− f (xk (t) ,q)=0        ∀ t∈[tk−1 , t k] , k=1. ..K

                xk (t k−1)=x̂0
k

                x̂0
1−g ( x0,q)=0

                x̂0
k−xk−1(t k−1)=0             ∀ k=2... K

                h(q)≥0

x0
k
−xk−1

 tk−1=0
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Multiple shooting

Outline with the solution operator:
By introducing the solution operator as before, the problem can 
be written as

Note: We now only ever have to differentiate

which integrates the ODE on the much shorter time intervals 
[t

k-1
,t

k
] and consequently is much less nonlinear.

min
x̂ 0,

1
... , x̂ 0,

K
q
 F (S (q , x0 , t i , t ) , q)

    where   S (q , x0 , t i , t):=S (q , x̂0
k
, tk−1 , t )    ∀ t∈[t k−1 , tk ]

such that  x̂0
1
−g (x0,q)=0

                x̂0
k−S (q , x̂0,

k−1 tk−1 , t k)=0                         ∀ k=2...K

                h(q)≥0

S q , x0
k , tk−1 , t 
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Part 26

Optimal control:
Introduction to the Theory
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Preliminaries

∀ x , y∈X :         xy∈X
∀ x∈X ,∈ℝ :    x∈X   

Definition: A vector space is a set X of objects so that the 
following holds:

In addition, associativity, distributivity and commutativity of 
addition has to hold. There also need to be identity and null 
elements of addition and scalar multiplication.

Examples:

X=ℝ
N

X=L20,T ={x t :∫0

T
∣x  t∣2 dt∞}

X=C0 0,T ={x t  : x t   is continuous on 0,T }

X=C10,T ={x t ∈C00,T : x  t  is continuously differentiable on 0,T }
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Preliminaries

〈 x , y 〉=∑i=1

N

x i y i

Definition: A scalar product is a mapping

of a pair of vectors from (real) vector spaces X,Y into the real 
numbers. It needs to be linear. If X=Y and x=y, then it also 
needs to be positive or zero.
Examples:

X=Y=ℝ
N

X=Y=L2 0,T 

〈 x , y 〉=∑i=1

N

 i xi y i    with weights 0 i∞

X=Y=l2 〈 x , y 〉=∑i=1

∞

x i y i

〈 x , y 〉=∫0

T

x  t y t  dt

〈⋅,⋅〉: X×Y ℝ
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Preliminaries

〈 x , y 〉=∑i=1

N

x i y i

Definition: Given a space X and a scalar product

we call Y=X' the dual space of X if Y is the largest space for 
which the scalar product above “makes sense”.

Examples:

X=ℝ
N

X=Lp 0,T  ,1p∞

X=C0
0,T  〈 x , y 〉=∫0

T

x  t y t  dt

〈⋅,⋅〉: X×Y ℝ

X=L20,T  〈 x , y 〉=∫0

T

x  t y t  dt

〈 x , y 〉=∫0

T

x  t y t  dt

Y=ℝ
N

Y=L2
0,T 

Y=Lq 0,T  ,
1
p


1
q
=1

Y=S0,T 
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Lagrange multipliers for finite dimensional problems

min
x∈ℝ

n        f x 
such that     g1 x=0
                   g2x =0
                   ⋮
                   gK x=0

Consider the following finite dimensional problem:

Definition: Let the Lagrangian be

Theorem: Under certain conditions on f,g the solution of above 
problem satisfies

Lx , =f x −∑i=1

K

i gix .

∂L
∂ x i

x* ,*=0,      i=1,... , N

∂L
∂i

x* ,*=0,      i=1,... , K
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Lagrange multipliers for optimal control problems

min x t            f x t  , t 
such that       gx  t , t =0        ∀ t∈[0,T ]

Consider the following optimal control problem:

Questions: 
● What would be the corresponding Lagrange multiplier for 

such a problem?
● What would be the corresponding Lagrangian function?
● What are optimality conditions in this case?
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Lagrange multipliers for optimal control problems

Formal approach: Take the problem

There are infinitely many constraints, one constraint for each 
time instant.

Following this idea, we would then have to replace

by

where we have one Lagrange multiplier for every time  t:         .

Lx , =f x −∑i=1

K

i gix .

Lx t  , t =f  x t , t−∫0

T

 t g x t , t  dt

 t 

min x t            f x t  , t 
such that       gx  t , t =0        ∀ t∈[0,T ]
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Lagrange multipliers for optimal control problems

The “correct” approach: If we have a set of equations like

then we can write this as

which we can interpret as saying

g1 x=0
g2 x=0

⋮
gK x=0

g x=0

〈gx , h 〉=0      ∀h∈ℝK
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Lagrange multipliers for optimal control problems

The “correct” approach: Likewise, if we have

then we can interpret this in different ways:
● At every possible time t we want that g(x(t),t) equals zero
● The measure of the set {t: g(x(t),t)≠0} is zero (“almost all t”)
● The integral                             is zero
● If                             then g(x(t),t) is zero in V, i.e.

Notes:
● The first and fourth statement are the same if
● The second and fourth statement are the same if
● The third and fourth statement are the same if

g x t , t =0

〈 gx t  , t  ,h 〉=∫0

T

gx t  , t ht  dt=0      ∀h∈V '

V=L1
[0,T ]

V=C0
 [0,T ]

V=L2 [0,T ]

g :X×[0,T ]V
∫0

T

∣gx  t , t ∣2 dt
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Lagrange multipliers for optimal control problems

min x t ∈X     f x t  , t 
such that    gx t  , t =0

In either case: Given

the Lagrangian is now

and

Lx t  , t =f  x t , t−〈 ,g x t , t 〉

                                =f x t  , t −∫0

T

 t gx t  , t   dt

L: X×V 'ℝ
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Optimality conditions for finite dimensional problems

Corollary: In view of the definition

we can say that the gradient of a function                    is a 
functional

In other words: The gradient of a function is an element in the 
dual space of its argument.

Note: For finite dimensional spaces, we can identify space and 
dual space. Alternatively, we can consider         as the space of 
column vectors with K elements and             as the space of row 
vectors with K elements. 
In either case, the dual product is well defined.

〈∇ x f x , 〉=lim
0

f x−f x 



∇ x f  :  ℝK ℝK  '

f :ℝ
K
ℝ

ℝK  '
ℝ

K
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Corollary: From above considerations it follows that for

we define

where

and

min
x∈ℝ

n        f x 
such that     g1 x=0
                   g2x =0
                   ⋮
                   gK x=0

Lx ,=f x−∑i=1

K
i gix 

L :  ℝ
N
×ℝ

K
ℝ

∇ xL :  ℝ
N
×ℝ

K
ℝ

N
 '

∇

L :  ℝN×ℝKℝK  '

Optimality conditions for finite dimensional problems
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Summary: For the problem

we define

The optimality conditions are then

or equivalently:

min
x∈ℝ

n        f x 
such that     g1 x=0
                   g2x =0
                   ⋮
                   gK x=0

Lx , =f x −∑i=1

K

 i gix .

∇ xL x
*
,

*
=0   in ℝ

N

∇

L x* ,*=0   in ℝK

〈∇ xL x
* ,* , 〉=0       ∀∈ℝN

〈∇ L x
* ,* , 〉=0       ∀∈ℝK

Optimality conditions for finite dimensional problems
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Theorem: Under certain conditions on f,g the solution satisfies

Note 1: These conditions can also be written as

Note 2: This, in turn, can be written as follows:

∂L
∂ x i

x* ,*=0,      i=1,. .. , N

∂L
∂i

x* ,*=0,      i=1,. .. , K

〈∇ xL x
* ,*, 〉=0,      ∀∈ℝN

〈∇
L x*, * , 〉=0,      ∀∈ℝK

〈∇ xL x
* ,* ,〉=lim0

L x* ,*−L x* ,*


=0,     ∀∈ℝN

〈∇ L x
*, *

 , 〉=lim0

L x* ,*−Lx* ,*


=0,      ∀∈ℝ

K

Optimality conditions for finite dimensional problems
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Optimality conditions for optimal control problems

Recall: For an optimal control problem

with

we have defined the Lagrangian as

min x t ∈X     f x t  , t 
such that    gx t  , t =0

Lx t  , t =f  x t , t−〈 ,g x t , t 〉

L: X×V 'ℝ

g : X×ℝV



198

Optimality conditions for optimal control problems

Theorem: Under certain conditions on f,g the solution satisfies

or equivalently

Note: The derivative of the Lagrangian is defined as usual:

〈∇ xL x
* ,* , 〉=0,      ∀∈X

〈∇ L x
* ,* , 〉=0,      ∀∈V

〈∇ xL x
* t  ,* t  , t 〉=lim0

Lx
*
t  t , 

*
t −L x

*
t  ,

*
t 



〈∇
L x* t  ,* t ,  t 〉= lim

 0

L x* t  ,* t  t −L x* t  ,* t 



∫0

T
∇ x L x

* t ,* t   t   dt=0,      ∀∈X

∫0

T
∇ L x

*t  ,* t   t   dt=0,     ∀∈V
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Optimality conditions: Example 1

Example: Consider the rather boring problem

for a given function         . The solution is obviously                 . 
Then the Lagrangian is defined as

and we can compute optimality conditions in the next step.

min x t ∈X     f x t  ,t =∫0

T

x t  dt

such that    gx t  , t =x t −t =0

Lx t  , t =∫0

T

x t  dt−〈 t  , x t − t 〉

                    =∫0

T
x t −  t [ x t − t ] dt

t  x t = t
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Optimality conditions: Example 1

Given

we can compute derivatives of the Lagrangian:

Lx t  , t =∫0

T

x t − t  [x  t− t ] dt

〈∇ xL (x(t ) ,λ(t )),ξ(t) 〉                                                                                                              

   =lim ϵ→0

1
ϵ { ∫

0

T

(x(t)+ϵξ(t))−λ(t)[(x (t )+ϵξ(t ))−ψ(t)] dt      

                                     −∫0

T
x (t )−λ(t )[ x (t )−ψ(t )] dt }

   =lim ϵ→0

∫0

T

ϵ ξ(t)−λ(t)[ϵξ(t )] dt
ϵ

   =∫
0

T

ξ(t )−λ(t) ξ(t ) dt

   =∫0

T

[1−λ(t)]ξ(t) dt

〈∇λ L(x (t) , λ(t)) ,η(t )〉=∫0

T

−[x (t )−ψ(t )]η(t ) dt
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Optimality conditions: Example 1

Example: Consider the rather boring problem

The optimality conditions are now

These can only be satisfied for

min x t ∈X     f x t  ,t =∫0

T

x t  dt

such that    gx t  , t =x t −t =0

〈∇
L x t ,  t ,  〉=∫0

T

−[x t − t ] t  dt=0        ∀ t 

〈∇ x Lx  t , t  , 〉=∫0

T

[1− t ] t  dt=0             ∀ t

1−t =0 ,       x  t−t =0,         ∀0≤t≤T
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Optimality conditions: Example 2

Example: Consider the slightly more interesting problem

The constraint allows all functions of the form                       for 
all constants a. Then the Lagrangian is defined as

Note: For                        the objective function has the value

which takes on its minimal value for 

min x t ∈X     f x t  ,t =∫0

T

x t 2 dt

such that    gx t  , t =ẋ t −t=0

Lx t  , t =∫0

T

x t 2 dt− 〈 t  , ẋ  t−t 〉

                    =∫0

T
x t 2−t [ ẋ t −t ] dt

x t =a
1
2
t2

x t =a
1
2
t2

∫
0

T
x t 2dt=∫

0

T [a1
2
t2 ]

2

= 1
20
T 51

3
aT 3a2T

a=−
1
6
T 2
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Optimality conditions: Example 2

Given

we can compute derivatives of the Lagrangian:

〈∇ xL (x(t ) ,λ(t )),ξ(t) 〉                                                                                                              

   =lim ϵ→0

1
ϵ { ∫

0

T

(x(t)+ϵξ(t))2−λ(t )[ ẋ (t )+ϵ ξ̇(t )−t ] dt      

                                     −∫0

T
x (t )2−λ(t)[ ẋ(t)−t ] dt }

   =lim ϵ→0

∫
0

T

2 ϵx (t )ξ(t )+ϵ2 ξ(t )2−λ(t)[ϵ ξ̇(t )] dt
ϵ

   =∫
0

T

2 x (t )ξ(t )−λ(t )ξ̇(t ) dt

   =∫0

T

[2 x (t )+λ̇ (t )] ξ(t) dt−[λ(t )ξ(t )]t=0

T

〈∇ λ L(x (t) ,λ(t)),η(t )〉=∫0

T

−[ ẋ (t )−t]η(t ) dt

Lx t  , t =∫0

T

x t 2−t [ ẋ t −t ] dt
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Optimality conditions: Example 2

The optimality conditions are now

From the second equation we can conclude that 

On the other hand, the first equation yields

Given the form of x(t), the first of these three conditions can be 
integrated:

Enforcing boundary conditions then yields

ẋ t −t=0          x t =a
1
2
t2

〈∇ x Lx  t , t  , 〉=∫0

T

[2 x t ̇ t ] t  dt−[ t t  ]t=0

T
=0     ∀ t 

〈∇ 
L x t ,  t ,  〉=∫0

T

−[ ẋ t −t ]  t dt                            =0      ∀ t 

2 x t ̇ t =0,   0=0,   T =0

 t =−2at−
1
3
t3b

b=0, a=−
1
6
T 2
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Optimality conditions: Example 3 – initial conditions

Theorem: Let                       . If x(t) satisfies the initial value 
problem

then it also satisfies the “variational” equality

and vice versa.

 ẋ t =f x t  , t 
 x 0=x0

∫0

T

[ ẋ t − f x t  , t ]  t  dt[ x0−x0] 0=0             ∀ t∈C0 [0,T ]

x∈C
1
, f ∈C

0
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Example: Consider the (again slightly boring) problem

The constraint allows for only a single feasible point,              

The Lagrangian is now defined as

min x t ∈X     f x t  , t =∫0

T

x t  dt

such that    ẋ t −t=0
                 x 0=1

Lx t  , t =∫0

T
x t  dt−〈 t  , ẋ t −t 〉−[ x 0−1 ] 0

                    =∫0

T
x t −  t [ ẋ t −t ] dt−0 [ x0−1]

x t =1
1
2
t2

Optimality conditions: Example 3 – initial conditions
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Given

we can compute derivatives of the Lagrangian:

〈∇ xL (x(t ) ,λ(t )) ,ξ(t) 〉                                                                                                              

   =limϵ→0

1
ϵ {∫0

T

(x (t )+ϵξ(t ))−λ(t )[ ẋ(t)+ϵ ξ̇(t)−t ] dt−λ(0)[ x (0)+ϵξ(0)−1]

                                     −∫0

T
x (t )−λ(t )[ ẋ (t )−t ] dt+λ(0)[x (0)−1]}

   =limϵ→0

∫
0

T

ϵ ξ(t)−λ(t)[ϵ ξ̇(t )] dt−ϵλ(0)ξ(0)
ϵ

   =∫
0

T

ξ(t )−λ(t) ξ̇(t ) dt−λ(0)ξ(0)

   =∫0

T

[1+λ̇(t)]ξ(t) dt−[λ(t) ξ(t) ]t=0

T
−λ(0)ξ(0)

   =∫0

T
[1+λ̇(t)]ξ(t) dt−λ(T ) ξ(T )

〈∇λ L(x (t) , λ(t)),η(t )〉=∫0

T
−[ ẋ (t )−t] η(t ) dt−η(0)[ x (0)−1]

Lx t  , t =∫0

T
x t −t  [ẋ  t−t ] dt−0 [ x0−1]

Optimality conditions: Example 3 – initial conditions
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The optimality conditions are now

From the second equation we can conclude that 

In other words: Taking the derivative of the Lagrangian with 
respect to the Lagrange multiplier gives us back the (initial value 
problem) constraint, just like in the finite dimensional case.

Note: The only feasible point of this constraint is of course

ẋ  t −t=0
x 0=1

〈∇ x Lx  t , t  , 〉=∫0

T

[1̇ t ] t  dt−T T           =0     ∀t 

〈∇ 
L x t ,  t ,  〉=∫0

T

−[ ẋ t −t ]  t dt−[ x 0−1] 0  =0      ∀ t 

x t =1
1
2
t 2

Optimality conditions: Example 3 – initial conditions
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The optimality conditions are now

From the first equation we can conclude that 

in much the same way as we could obtain the initial value 
problem for x(t).

Note: This is a final value problem for the Lagrange multiplier! 
Its solution is

1̇ t =0
T =0

〈∇ x Lx  t , t  , 〉=∫0

T

[1̇ t ] t  dt−T T           =0     ∀t 

〈∇ 
L x t ,  t ,  〉=∫0

T

−[ ẋ t −t ]  t dt−[ x 0−1] 0  =0      ∀ t 

 t =T−t

Optimality conditions: Example 3 – initial conditions
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Optimality conditions: Example 4 – initial conditions

Note: If the objective function had been nonlinear, then the 
equation for λ(t) would contain x(t) but still be linear in λ(t).

Example: Consider the (again slightly boring) variant of the 
same problem

The constraint allows for only a single feasible point,              

The Lagrangian is now defined as

min x  t ∈X     f x t  , t =∫0

T 1
2
x t 2 dt

such that    ẋ t −t=0
                 x 0=1

Lx  t ,  t =∫0

T 1
2
x  t 2−t [ ẋ  t −t ] dt−0[x 0−1]

x t =1
1
2
t2
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Given

the derivatives of the Lagrangian are now:

〈∇ x L x t  ,t  , 〉=∫0

T
[x t ̇ t ] t  dt−T T 

〈∇
L x t ,  t ,  〉=∫0

T
−[ ẋ t −t ]  t dt− 0 [x 0−1]

Lx  t ,  t =∫0

T 1
2
x  t 2−t [ ẋ  t −t ] dt−0[x 0−1]

Optimality conditions: Example 4 – initial conditions
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The optimality conditions are now

From the second equation we can again conclude that 

with solution

ẋ  t −t=0
x 0=1

〈∇ x L x t  ,t  , 〉=∫0

T
[x t ̇ t ] t  dt−T T       =0     ∀ t 

〈∇ 
L x t ,  t ,  〉=∫0

T

−[ ẋ t −t ]  t dt−[ x 0−1] 0  =0      ∀ t 

x t =1
1
2
t 2

Optimality conditions: Example 4 – initial conditions
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The optimality conditions are now

From the first equation we can now conclude that 

Note: This is a linear final value problem for the Lagrange 
multiplier. 
Given the form of x(t), we can integrate the first equation:

Together with the final condition, we obtain

x  t ̇ t =0
T =0

〈∇ 
L x t ,  t ,  〉=∫0

T

−[ ẋ t −t ]  t dt−[ x 0−1] 0  =0      ∀ t 

 t =−t−
1
6
t3a

〈∇ x L x t  ,t  , 〉=∫0

T
[x t ̇ t ] t  dt−T T       =0     ∀ t 

 t =−t−
1
6
t3T

1
6
T 3

Optimality conditions: Example 4 – initial conditions
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Optimality conditions: Preliminary summary

Summary so far: Consider the (not very interesting) case 
where the constraints completely determine the solution, i.e. 
without any control variables:

Then the optimality conditions read in “variational form”:

〈∇
L x t  ,t  , 〉=∫0

T
−[ ẋ t −g x t  , t ]  t  dt−[x 0−x0] 0  =0

                                                                                                            ∀t  , t 

〈∇ x L x t  ,t  , 〉=∫0

T
[Fx x t  , t g x x t  , t ̇  t ] t  dt−T T =0

min x  t ∈X     f x t  , t =∫0

T
F x t  ,t  dt

such that    ẋ t −g x t  , t =0
                 x 0=x0
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Optimality conditions: Preliminary summary

Summary so far: Consider the (not very interesting) case 
where the constraints completely determine the solution, i.e. 
without any control variables:

Then the optimality conditions read in “strong” form:

Note: Because x(t) does not depend on the Lagrange multiplier, 
the optimality conditions can be solved by first solving for x(t) as 
an initial value problem from 0 to T and in a second step solving 
the final value problem for λ(t) backward from T to 0.

min x  t ∈X     f x t  , t =∫0

T
F x t  ,t  dt

such that    ẋ t −g x t  , t =0
                 x 0=x0

 ẋ t −g x t  ,t =0
 x 0=x0

 ̇  t=−F x x t  , t −gxx  t , t 

 T =0



216

Part 27

Optimal control: Theory
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Optimality conditions for optimal control problems
Recap:

Let
● X a space of time-dependent functions
● Q a space of control parameters, time dependent or not
●                  a continuous functional on X and Q
●                  continuous operator on X mapping into a space Y
●                  continuous operator on X mapping into a space Z

x

●                  continuous operator on Q mapping into a space Z
q

Then the problem

is called an optimal control problem.

f :X×Qℝ

L :X×QY

g : XZ x

min x=x  t ∈X , q∈Q   f x  t  ,q
such that           L x t  ,q =0        ∀ t∈[ ti , t f ]
                         gx t     ≥0        ∀ t∈[t i , t f ]
                         hq         ≥0

h:QZ q
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Optimality conditions for optimal control problems
There are two important cases:

● The space of control parameters, Q, is a finite dimensional 
set

● The space of control parameters, Q, consists of time 
dependent functions

min
x=x  t ∈X , q∈Q=ℝ

n   f x  t , q

such that                Lx  t , q=0        ∀ t∈[ti , t f ]
                              gx  t     ≥0        ∀ t∈[t i , t f ]
                              hq         ≥0

min x=x  t ∈X , q∈Q   f x  t  ,q t 
such that           L x t  ,q t =0        ∀ t∈[t i ,t f ]
                         gx t  ,q t  ≥0        ∀ t∈[ti , t f ]
                         hq t          ≥0
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The finite dimensional case

Consider the case of finite dimensional control variables q:

with

Because the differential equation now depends on q, the feasible 
set is no longer just a single point. Rather, for every q there is a 
feasible x(t) if the ODE is solvable.

In this case, we have (all products are understood to be dot 
products):

min
x t ∈X ,q∈ℝ

n     f x t  , t ,q=∫0

T

F x  t , t ,qdt

such that           ẋ  t−g x t  , t , q=0
                         x 0=x0 q

Lx  t , q ,t =∫0

T
F x t  , t ,qdt−〈 , ẋ t −gx  t , t , q〉−0[x 0−x0q]

L :X×ℝ
n
×V 'ℝ

g : X×ℝ×ℝ
n
V
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The finite dimensional case

Theorem: Under certain conditions on f,g the solution satisfies

The first two conditions can equivalently be written as

Note: Since q is finite dimensional, the following conditions are 
equivalent:

〈 ∇ xL x
*, q* ,* , 〉=0,      ∀∈X              

〈∇
L x*, q* ,* , 〉=0,      ∀∈V              

〈∇ q L x
* , q* ,* , 〉=0,      ∀∈ℝn '=ℝn

∫0

T
∇ x L x

* t , q ,* t   t   dt=0,     ∀∈X

∫0

T
∇ L x

*t  , q, * t   t   dt=0,      ∀∈V

〈∇ q L x
* ,q ,* , 〉=0,      ∀∈ℝn '=ℝn

∇q L x
* ,q ,*=0                                        
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The finite dimensional case

Corollary: Given the form of the Lagrangian,

the optimality conditions are equivalent to the following three 
sets of equations:

Remark: These are called the primal, dual and control 
equations, respectively.

̇ t =−F xx  t , t , q−gxx t  ,t ,q ,                 T =0

L x  t , q,  t =∫0

T
F x t  ,t ,q−t [ ẋ  t−gx t  ,t ,q ]dt

                                          −0 [x0−x0 q ]

ẋ t =gx  t , t , q ,                                            x 0=x0q

∫0

T
Fq x  t , t , qt  gq x t  , t ,qdt0

∂x0 q

∂q
=0
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The finite dimensional case

The optimality conditions for the finite dimensional case are

Note: The primal and dual equations are differential equations, 
whereas the control equation is a (in general nonlinear) algebraic 
equation. This should be enough to identify the two 
time-dependent functions and the finite dimensional parameter.

However: Since the control equation determines q for given 
primal and dual variables, we can no longer integrate the first 
equation forward and the second backward to solve the problem. 
Everything is coupled now!

̇ t =−F xx  t , t , q−gxx t  ,t ,q ,                 T =0

ẋ t =gx  t , t , q ,                                            x 0=x0q

∫
0

T
Fq x  t , t , qt  gq x t  , t ,qdt0

∂x0 q

∂q
=0
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The finite dimensional case: An example

Example: Throw a ball from height h with horizontal velocity v
x
 

so that it lands as close as possible from x=(1,0) after one time 
unit:

Then:

min {x t  , v  t }∈X ,q={h , vx }∈ℝ2     
1
2 x t −10

2

=
1
2
∫0

T

x  t −10
2

t−1dt

such that                   ẋ t =v t              x 0=0h
                                 v̇ t = 0

−1            v 0=v x0 

L {x t  , v t },q ,{x t  ,v t }

     =
1
2∫0

T

x t −10 
2

 t−1dt−〈x , ẋ t −v t 〉−〈v , v̇ t − 0
−1〉

          − x0 [x0−0h]−v 0[v 0−v x0 ]
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The finite dimensional case: An example

From the Lagrangian 

we get the optimality conditions:
● Derivative with respect to x(t):

After integration by parts, we see that this is equivalent to

L {x t  , v t },q ,{x t  ,v t }

     =
1
2∫0

T

x t −10 
2

 t−1dt−〈x , ẋ t −v t 〉−〈v , v̇ t − 0
−1〉

          − x0 [x0−0h]−v 0[v 0−v x0 ]

∫
0

T

x t −10x t   t−1dt−∫
0

T

x t ̇x t dt−x 0x 0=0       ∀x t

x t −10 t−1̇x t =0         x T =0
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The finite dimensional case: An example

From the Lagrangian 

we get the optimality conditions:
● Derivative with respect to v(t):

After integration by parts, we see that this is equivalent to

L {x t  , v t },q ,{x t  ,v t }

     =
1
2∫0

T

x t −10 
2

 t−1dt−〈x , ẋ t −v t 〉−〈v , v̇ t − 0
−1〉

          − x0 [x0−0h]−v 0[v 0−v x0 ]

∫0

T

x t v t dt−∫0

T

v t ̇v t dt−v0v0=0       ∀v t 

x t ̇v t =0         vT =0
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The finite dimensional case: An example

From the Lagrangian 

we get the optimality conditions:
● Derivative with respect to λ

x
(t):

This is equivalent to

L {x t  , v t },q ,{x t  ,v t }

     =
1
2∫0

T

x t −10 
2

 t−1dt−〈x , ẋ t −v t 〉−〈v , v̇ t − 0
−1〉

          − x0 [x0−0h]−v 0[v 0−v x0 ]

∫
0

T

 x t [ ẋ t −v t ]dt− x 0[x 0−0h]=0       ∀ xt 

ẋ t −v t =0          x 0−0h=0
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The finite dimensional case: An example

From the Lagrangian 

we get the optimality conditions:
● Derivative with respect to λ

v
(t):

This is equivalent to

L {x t  , v t },q ,{x t  ,v t }

     =
1
2∫0

T

x t −10 
2

 t−1dt−〈x , ẋ t −v t 〉−〈v , v̇ t − 0
−1〉

          − x0 [x0−0h]−v 0[v 0−v x0 ]

∫
0

T

 v t [ v̇ t − 0
−1]dt− v0[v0−vx0  ]=0       ∀ v t 

v̇  t− 0
−1=0          v 0−vx0 =0
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The finite dimensional case: An example

From the Lagrangian 

we get the optimality conditions:
● Derivative with respect to the first control parameter h:

● Derivative with respect to the second control parameter v
x
:

L {x t  , v t },q ,{x t  ,v t }

     =
1
2∫0

T

x t −10 
2

 t−1dt−〈x , ẋ t −v t 〉−〈v , v̇ t − 0
−1〉

          − x0 [x0−0h]−v 0[v 0−v x0 ]

x , 2 0=0

v , 10=0
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The finite dimensional case: An example

The complete set of optimality conditions is now as follows:

State equations:
(initial value problem)

Adjoint equations:
(final value problem)

Control equations:
(algebraic)

x , 2 0=0

v , 10=0

x t −10 t−1̇x t =0         x T =0

x t ̇v t =0         vT =0

ẋ t −v t =0          x 0−0h=0

v̇  t− 0
−1=0          v 0−vx0 =0
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The finite dimensional case: An example

In this simple example, we can integrate the optimality 
conditions in time:
State equations:
(initial value problem)

Solution:

ẋ t −v t =0          x 0−0h=0

v̇  t− 0
−1=0          v 0−vx0 =0

v  t= vx−t 

x t =
vx t

h−1
2
t2 
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The finite dimensional case: An example

In this simple example, we can integrate the optimality 
conditions in time:
Adjoint equations:
(final value problem)

Solution:

Using what we found for x(1) previously:

x t =−[x1−10]   for t1

x t −10 t−1̇x t =0         x T =0

x t ̇v t =0         vT =0

x t =0    for t1

v t =[ x 1−10]t    for t1

v t =0    for t1

x t =−
vx−1

h−1
2     for t1

x t =0    for t1 v t =0    for t1

v t =
vx−1

h−1
2  t−1    for t1
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The finite dimensional case: An example

In the final step, we use the control equations:

But we know that

Consequently, the solution is given by

x t =−
vx−1

h−1
2     for t1 v t =

vx−1

h−1
2  t−1    for t1

x , 2 0=0

v , 10=0

h=
1
2

v x=1
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The infinite dimensional case

Consider the case of a control variable q(t) that is a function 
(here, for example, a function in L2):

with

In this case, we have

min x  t ∈X , q t ∈L2
[0,T ]

  f  x t  , t , q t =∫0

T
F x t  ,t ,q t dt

such that                  ẋ t −g x t  ,t , q t =0
                                x 0=x0q0

Lx t  ,q t  , t =∫0

T

F  x t , t ,q t dt−〈 , ẋ t −gx t  , t ,q t 〉
                                          −0[ x 0−x0 q0]

L: X×L2[0,T ]×V 'ℝ

g : X×ℝ×ℝ
n
V
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The infinite dimensional case

Theorem: Under certain conditions on f,g the solution satisfies

The first two conditions can equivalently be written as

Note: Since q is is now a function, the third optimality condition 
is:

〈∇ xL x
* ,q*, * , 〉=0,      ∀∈X              

〈∇
Lx* ,q* ,* , 〉=0,      ∀∈V              

〈∇ qL x
* ,q*, * ,〉=0,      ∀ ∈L2 [0,T ]' =L2[0,T ]

∫0

T
∇ x L x

* t , q ,* t   t   dt=0,     ∀∈X

∫0

T
∇ L x

*t  , q, * t   t   dt=0,      ∀∈V

∫0

T

∇ qL x
* t , q, * t   t   dt=0,      ∀∈L2 [0,T ]
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The infinite dimensional case

Corollary: Given the form of the Lagrangian,

the optimality conditions are equivalent to the following three 
sets of equations:

Remark: These are again called the primal, dual and control 
equations, respectively.

̇ t =−Fx x t , t , qt −g xx  t , t ,q t  ,         T =0

ẋ t =gx t  , t , q t ,                                         x 0=x0 q 0

F q x t , t ,q t gq x t  , t ,q=0,                   0
∂x0 q

∂q
=0

Lx t  ,q t  , t =∫0

T

F  x t , t ,q t dt−〈 , ẋ t −gx t  , t ,q t 〉
                                          −0[x 0−x0 q0]
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The infinite dimensional case

The optimality conditions for the infinite dimensional case are

Note 1: The primal and dual equations are differential equations, 
whereas the control equation is a (in general nonlinear) algebraic 
equation that has to hold for all times between 0 and T. This 
should be enough to identify the three time-dependent functions.

Note 2: Like for the finite dimensional case, all three equations 
are coupled and can not be solved one after the other.

̇ t =−Fx x t , t , qt −g xx  t , t ,q t  ,         T =0

ẋ t =gx t  , t , q t ,                                         x 0=x0 q 0

F q x t , t ,q t gq x t  , t ,q=0,                   0
∂x0 q

∂q
=0
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The infinite dimensional case: An example

Example: Throw a ball from height 1. Use vertical thrusters so 
that the altitude follows the path 1+t2:

Then:

min
{x t  , v  t }∈X ,q  t ∈L2

[0,T ]     
1
2
∫0

T
 x t −1t2 

2
dt

such that                            ẋ  t =v t                     x 0=1
                                          v̇ t =−1q t            v 0=0

L {x  t , v  t}, q t , {x t  ,v t }

     =
1
2
∫0

T
 x t −1t2 

2
dt−〈x , ẋ  t−v t 〉−〈v , v̇ t −[−1qt  ]〉

          −x 0 [x 0−1 ]−v 0 [v 0−0 ]
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The infinite dimensional case: An example

From the Lagrangian 

we get the optimality conditions:
● Derivative with respect to x(t):

After integration by parts, we see that this is equivalent to

∫0

T
 x  t−1t 2x tdt−∫0

T
 x t ̇x t dt− x0x0=0       ∀x t 

 x t −1t2 ̇ xt =0          xT =0

L {x  t , v  t}, q t , {x t  ,v t }

     =
1
2
∫0

T
 x t −1t2 

2
dt−〈x , ẋ  t−v t 〉−〈v , v̇ t −[−1qt  ]〉

          −x 0 [x 0−1 ]−v 0 [v 0−0 ]
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The infinite dimensional case: An example

From the Lagrangian 

we get the optimality conditions:
● Derivative with respect to v(t):

After integration by parts, we see that this is equivalent to

∫0

T
 x tv t dt−∫0

T
v t ̇v t dt− v0v 0=0       ∀v t 

x t ̇v t =0         vT =0

L {x  t , v  t}, q t , {x t  ,v t }

     =
1
2
∫0

T
 x t −1t2 

2
dt−〈x , ẋ  t−v t 〉−〈v , v̇ t −[−1qt  ]〉

          −x 0 [x 0−1 ]−v 0 [v 0−0 ]
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The infinite dimensional case: An example

From the Lagrangian 

we get the optimality conditions:
● Derivative with respect to λ

x
(t):

This is equivalent to

∫0

T
 x t [ ẋ t −v t  ]dt− x0[ x 0−1 ]=0       ∀  x t 

ẋ t −v t =0          x 0−1=0

L {x  t , v  t}, q t , {x t  ,v t }

     =
1
2
∫0

T
 x t −1t2 

2
dt−〈x , ẋ  t−v t 〉−〈v , v̇ t −[−1qt  ]〉

          −x 0 [x 0−1 ]−v 0 [v 0−0 ]
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The infinite dimensional case: An example

From the Lagrangian 

we get the optimality conditions:
● Derivative with respect to λ

v
(t):

This is equivalent to

∫0

T
 v  t [ v̇  t −−1qt  ]dt− v0 [v 0−0 ]=0       ∀v t 

v̇  t −−1qt =0          v 0=0

L {x  t , v  t}, q t , {x t  ,v t }

     =
1
2
∫0

T
 x t −1t2 

2
dt−〈x , ẋ  t−v t 〉−〈v , v̇ t −[−1qt  ]〉

          −x 0 [x 0−1 ]−v 0 [v 0−0 ]
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The infinite dimensional case: An example

From the Lagrangian 

we get the optimality conditions:
● Derivative with respect to the control function q(t):

This is equivalent to

L {x  t , v  t}, q t , {x t  ,v t }

     =
1
2
∫0

T
 x t −1t2 

2
dt−〈x , ẋ  t−v t 〉−〈v , v̇ t −[−1qt  ]〉

          −x 0 [x 0−1 ]−v 0 [v 0−0 ]

∫0

T
v  t tdt=0       ∀ t 

v t =0
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The infinite dimensional case: An example

The complete set of optimality conditions is now as follows:

State equations:
(initial value problem)

Adjoint equations:
(final value problem)

Control equation:
(algebraic, time dependent)

ẋ t −v t =0                    x 0−1=0

v̇  t −−1qt =0          v 0=0

 x t −1t2 ̇ xt =0          xT =0

x t ̇v t =0                      vT =0

v t =0
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The infinite dimensional case: An example

Let us use all these equations in turn:

Control equation:

Adjoint equations:

Solution:

Remark: This already implies that we can follow the desired 
trajectory exactly!

 x t −1t2 ̇ xt =0          xT =0

x t ̇v t =0                      vT =0

v t =0

v t =0

x t =0

x  t =1t 2
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The infinite dimensional case: An example

Let us use all these equations in turn:

Now known:

State equation:

Solution:

Conclusion: We need a vertical thrust of 3 to offset gravity and 
achieve the desired trajectory!

x t =1t
2

v t =2t
q t= v̇ t 1=21=3

ẋ t −v t =0                    x 0−1=0

v̇  t −−1qt =0          v 0=0
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Part 28

Optimal control with equality 
constraints: Theory
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Equality constrained optimal control problems

Previously: So far, we have considered optimal control 
problems where the only constraints were the ODE and initial 
conditions.

Now: Consider a problem where we also have equality 
constraints on the state. Specifically, consider final time 
constraints:

Constraints of this form typically occur if we want to be in a 
certain state (e.g. location) at the end time and seek the minimal 
energy/ minimal cost path to get there.

min
x t ∈X ,q t ∈L

2
 [0,T ]

  f x  t , t ,q t =∫0

T

F x  t ,t ,q t dt

such that                  ẋ t −gx t  ,t ,q t=0
                                x 0=x0 q 0

                                 x T  , qT  ,T =0
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Equality constrained optimal control problems

Consider a problem where we also have equality constraints on 
the state. Specifically, consider final time constraints:

Then:

min x t ∈X ,q t ∈L2
 [0,T ]

  f x  t , t ,q t =∫0

T

F x  t ,t ,q t dt

such that                  ẋ t −gx t  ,t ,q t=0
                                x 0=x0 q 0

                                 x T  , qT  ,T =0

L x t  ,q t  ,t  , =∫0

T
F x t  ,t ,q t dt− 〈 , ẋ t −g x t  ,t ,q t 〉

                                          −0 [x0−x0 q 0]− xT  , qT  ,T 

L: X×L2[0,T ]×V '×ℝℝ
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Equality constrained optimal control problems

Theorem: Under certain conditions the solution satisfies

Note 1: The last of these equations is simply

Note 2: The first equation is now

〈∇ xL x
* ,q*, * , *

, 〉=0,      ∀∈X              

〈∇
Lx* ,q* ,*, *

 , 〉=0,     ∀∈V              

〈∇ qL x
* ,q*, * , *, 〉=0,     ∀∈L2 [0,T ] '=L2 [0,T ]

〈∇  L x
* , q* ,* ,*

 , 〉=0,      ∀∈ℝ

x T  ,qT  ,T =0

∫0

T
Fx x t  , t ,q t  t dt−〈 ,̇ t −gxx  t , t , q t  t 〉

                                          −00−  xx T  ,q T  ,T  T =0    ∀ t
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Equality constrained optimal control problems

Corollary: Given the form of the Lagrangian,

the optimality conditions are equivalent to the following four sets 
of equations:

These are now called state equations, adjoint equation, control 
equation, and transversality equation.

̇ t =−F xx  t , t , qt −gx x t  ,t ,q t  ,    T =− x x T , qT  ,T 

ẋ t =gx  t , t , q t ,                                     x 0=x0q0

Fq x t  ,t ,q t gqx  t , t , q=0,             0
∂ x0 q

∂q
= q x T  ,qT  ,T 

Lx  t , qt  , t  , =∫0

T

F x  t , t ,q t dt−〈 , ẋ t −gx t  , t , q t 〉
                                          −0[x 0−x0 q0]− xT  ,q T , T 

x T  ,qT  ,T =0
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Equality constrained optimal control problems

Example (“geodesics”): Consider a Mars rover. Given a force 
vector q(t) then it will move with a velocity

where the function            indicates how “rough/smooth” the 
terrain is at position x: if the terrain is smooth, then          is large; 
if it is rough, then           is small.

The goal is then to find a path from x
A
 to x

B
 with minimal energy. 

Let's assume that the power necessary to create a force q(t) is 
equal to |q(t)|2. Then the problem is:

min x  t ∈X , q t ∈L2
[0,T ]

    
1
2
∫0

T
q t 

2
dt

such that                     ẋ t = x t q t
                                   x 0=x A
                                   x T =xB

ẋ t   = x t  q t 

x
x

x
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Equality constrained optimal control problems

Example (“geodesics”): For the problem

the Lagrangian is given by

min x  t ∈X , q t ∈L2
[0,T ]

    
1
2
∫0

T
q t 

2
dt

such that                     ẋ t = x t q t
                                   x 0=x A
                                   x T =xB

L x  t , qt  , t ,   =  
1
2
∫0

T
q t 

2
dt−〈 , ẋ t −x  tq t 〉

                                                −0[x 0−xA ]− [x T −x B]
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Equality constrained optimal control problems

Example (“geodesics”): The Lagrangian is given by

The optimality conditions are then:

In general, there is no trivial solution to this system.

̇ t ∇x  t [q t ⋅ t ]=0    T =−

L x  t , qt  , t ,   =  
1
2
∫0

T
q t 

2
dt−〈 , ẋ t −x  tq t 〉

                                                −0[x 0−xA ]− [ x T −x B]

ẋ t −x t qt =0                   x 0=x A

q t x  t=0

xT =xB
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Equality constrained optimal control problems

Example (“geodesics”): Consider the simplest case, 
Then the optimality conditions are:

This system is solved by

That is, the rover moves at constant speed on a straight line and 
the optimal value of the objective function is

̇ t =0                      T =−

ẋ t −qt =0            x 0=xA

q t =0

xT =xB

x=1

t =−

x t = tx A

q t =

=xB−x A/T

1
2
2T=

1
2
∥xB−x A∥

2 /T
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Equality constrained optimal control problems

Example (“geodesics”): Consider the more difficult case where 
the rover can move twice as fast in the lower half plane than in 
the upper half plane: 

with H(y)=0 for y=0. Let x
A
=(-2,1)T, x

B
=(2,1)T.

Then the optimality conditions are:

x={1  if x20
2  if x2≤0}=2−H x2

̇ t − 0
 x2 t [q t⋅ t ]=0                 T =−

ẋ t −2−H x2 tq t =0                    x 0=xA

q t 2−H x2 t =0

xT =xB
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Equality constrained optimal control problems

Example (“geodesics”): Consider this difficult case. Equations

have the following solution (note: path is in the upper half):

The optimal objective function value is then

ẋ t −2−H x2 t q t =0             x 0=xA

q t 2−H x2 t =0

xT =xB

t =−

x t = tx A

q t =

=
1
T 40

1
2
2T=

8
T

̇ t − 0
 x2 t [q t⋅ t ]=0          T =−
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Equality constrained optimal control problems

But careful: The conditions

also have a solution of the form

(Details to be determined. We also have to specify in more detail 
what it means if we move along the line x

2
=0, c.f. the first 

equation above.)

x t =−2
1 −

0 021
q t =const

ẋ t −2−H x2 t q t =0             x 0=xA

q t 2−H x2 t =0

xT =xB

̇ t − 0
 x2 t [q t⋅ t ]=0          T =−
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Part 29

Direct vs. indirect methods
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Direct vs. indirect methods

How do we solve general optimal control problems:
● Direct methods are based on the original problem 

formulation.
We can think of them as “discretize first, then optimize”.

● Indirect methods attempt to solve the optimality conditions.
We can think of them as “optimize first, then discretize”

Example: To find a minimum of f(x),
● Direct methods would find a sequence x

1
, x

2
, … and would 

only have to ensure that f(x
1
) > f(x

2
), …

I.e. it would only have to compare function values.

● Indirect methods would try to find a solution of the equation 
f'(x)=0.

I.e. we would have to compute derivatives of the objective 
function.
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Direct vs. indirect methods

In practice, all methods in actual use are direct:
● For many realistic problems, the user-defined function F,g,... 

are complicated and providing derivatives for the necessary 
conditions is not practical

● Good initial estimates for the Lagrange multipliers are 
typically not available

● Without good initial estimates, indirect methods often wander 
off into lala-land unless the problem is exceptionally stable

● With state inequalities, we need to provide an a-priori guess 
when the inequalities will be active. This is not practical.

Consequently: The optimality conditions derived so far are of 
mostly theoretical interest in optimal control. They are of 
importance in PDE-constrained optimization, however.
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Part 30

Numerical solution of 
optimal control problems with 

direct methods
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The shooting method for realistic optimal control

Consider a problem with equality constraints on the state: 
Specifically, consider final time constraints:

Approach: We want to apply a (single) shooting method to it. To 
this end, introduce a time mesh

and a time step size                    . 

We then apply one of the common time stepping methods to the 
optimal control problem. (This step is called “discretization”.)

min
x t ∈X ,q t ∈L

2
 [0,T ]

  f x  t , t ,q t =∫0

T
F x  t ,t ,q t dt

such that                  ẋ t −gx t  ,t ,q t=0
                                x 0=x0 q 0

                                 x T  , qT  ,T =0

0=t 0t1t2...t N=T

kn=t n−tn−1
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The shooting method for realistic optimal control

Consider a problem with equality constraints on the state: 
Specifically, consider final time constraints:

Example: Using the (overly trivial, low-order) forward Euler 
method, replace the original problem with the discretized form

min
x t ∈X ,q t ∈L

2
 [0,T ]

  f x  t , t ,q t =∫0

T
F x  t ,t ,q t dt

such that                  ẋ t −gx t  ,t ,q t=0
                                x 0=x0 q 0

                                 x T  , qT  ,T =0

min
x
n
,q

n
, n=0,. .., N

  f x0 , ... ,x N ,q0 , ... ,qN =∑
n=1

N
knF  x

nxn−1

2
, tn ,

qnqn−1

2 
such that                  

xn−xn−1

kn
−gxn−1 t  , t n−1 , q

n−1 t =0

                                x0=x0q
0

                                xN , qN , T =0
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The shooting method for realistic optimal control

The discretized problem now reads as:

Note: Introducing                                             this has the form

If x(t) has n
x
 components and q(t) has n

q
 components, then

min y           f  y 
such that    c  y =0

min
x
n
,q

n
, n=0,. .., N

  f x0 , ... ,x N ,q0 , ... ,qN =∑
n=1

N
knF  x

nxn−1

2
, tn ,

qnqn−1

2 
such that                  

xn−xn−1

kn
−gxn−1 t  , t n−1 , q

n−1 t =0

                                x0=x0q
0

                                xN , qN , T =0

y= x
0
,q

0
, x

1
,q

1
, ... x

N
,q

N

T

y∈ℝN1 nxnq ,      c∈ℝ
Nnxnxn
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The shooting method for realistic optimal control

The discretized problem is now equivalent to a large, 
nonlinear optimization problem:

Its solution has to satisfy

where

Note: We have one Lagrange multiplier for each time step, but 
these are all independent. Conversely, in the indirect approach, 
we would have had Lagrange multipliers for each time step that 
satisfy a discrete ODE and are therefore all coupled.

This is what makes the direct method more practical.

min y           f  y 
such that    c  y =0

∂ L
∂ y

=
∂ f  y
∂ y

−T
∂c y 
∂ y

=0

∂ L

∂
=c  y                      =0

L y ,=f  y−
T
c  y .
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The shooting method for realistic optimal control

We can solve this problem using, for example, the SQP method:

We will abbreviate this as

where

∇ y
2 f y k −k

T
∇ y

2 c  yk  −∇ yc  yk 

−∇ y c yk 
T 0 pk

y

p k
   =  

                                                         =  −∇ y f  yk −k
T∇ y c yk 

−g  yk  

 W k −Ak

−Ak
T 0 p k

y

pk
  =  −∇ y f yk −k

T
∇ c  yk 

−c y k 
W k = ∇ y

2 L y k ,k                          
Ak = ∇ y c yk  = −∇ x∇

L y k ,k
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The shooting method for realistic optimal control

In each iteration, we have to solve the linear system

The matrix on the left has dimensions

Note: It is not uncommon to have 10-100 state variables, 1-10 
control variables, and 1,000-10,000 time steps. That means the 
matrix on the left can easily be of size 10,0002 to 1,000,0002!

That would be a very large and awkward system to solve in each 
iteration!

 W k −Ak

−Ak
T 0 p k

y

pk
  =  −∇ y f yk −k

T
∇ c  yk 

−c y k 

[N1nxnq Nnxnxn ]×[N1nxnqNnxnxn ]
                       =[N1nx1nqn ]×[N1nx1nqn ]
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The shooting method for realistic optimal control

Conclusion so far: The SQP system

is very large.

However: The matrix on the left is also almost completely 
empty. Remember that

and that

 W k −Ak

−Ak
T 0 p k

y

pk
  =  −∇ y f yk −k

T
∇ c  yk 

−c y k 

W k = ∇ y
2 L y k ,k=∇ y

2 f  y k −∑i
k , i∇ y

2 ci y k

Ak = ∇ y c yk 

f  y =∑
n=1

N

kn F  x
nxn−1

2
, t n ,

qnqn−1

2 

c y =
xn−xn−1

k n
−gxn−1

t  , tn−1 ,q
n−1

t 

x0−x0 q
0

 xN , qN ,T 
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The shooting method for realistic optimal control

Conclusion so far: The SQP system

is very large.

However: The matrix on the left is also almost completely 
empty. It typically has a (block) structure of the form

Note: Such systems are not overly complicated to solve.

 W k −Ak

−Ak
T 0 p k

y

pk
  =  −∇ y f yk −k

T
∇ c  yk 

−c y k 
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The multiple shooting method

Instead of using the single shooting method, 

we relax the formulation to obtain the multiple shooting method:

min
x
n
,q

n
, n=0,. .., N

  f x0 , ... ,x N ,q0 , ... ,qN =∑
n=1

N
knF  x

nxn−1

2
, tn ,

qnqn−1

2 
such that                  

xn−xn−1

kn
−gxn−1 t  , t n−1 , q

n−1 t =0

                                x0=x0q
0

                                xN , qN , T =0

min xs ,n , qs, n ,n=0,. .. , Ns , s=1. .. S   ∑
s=1

S

∑
n=1

N s

k s ,n F  x
s , nxs , n−1

2
, ts , n ,

q s ,nq s ,n−1

2 
such that                  

xs , n−xs ,n−1

ks , n
−gxs ,n−1 t  , ts , n−1, q

s, n−1 t=0,    s=2... S

                                x1,0
=x0q

1,0


                                xs , 0=x
s−1, N s−1 ,                                                     s=2. ..S

                                 xS , NS ,qS , NS ,T =0
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The multiple shooting method

Multiple shooting method: The SQP system has the form

with now even more variables.

However: The matrix on the left is again also almost completely 
empty. It typically has a (block) structure of the form

Note: Again, such systems are not overly complicated to solve. 
In particular, this system can now also be solved in parallel.

 W k −Ak

−Ak
T 0 p k

y

pk
  =  −∇ y f yk −k

T
∇ c  yk 

−c y k 
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Time stepping vs. SQP

Remark: A typical strategy of coupling time discretization and 
nonlinear optimization is

● to start with a relatively small number of time steps
● do one or more SQP steps
● interpolate the current solution variables xn, qn as well as the 

Lagrange multipliers to a finer time mesh
● do some more SQP iterations and iterate this procedure

Advantages:
● While we are far away from the solution, the number of 

variables is small and so every SQP step is fast
● Only close to the solution do iterations get expensive
● The degree of ill-posedness of problems typically increases 

with smaller time steps. We can work with well-posed 
problems while we need to take large steps, stabilizing the 
process.
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