MATH 601: QUIZ 9 (11/07/2012)

NAME:

UIN:

Problem 1 (5 points): For each of the following mappings, state whether it is linear or not. If it is not linear, explain why.

• $F : \mathbb{R}^3 \to \mathbb{R}^2$ defined by $F(v) := \begin{pmatrix} v_1 + 1 \\ v_2 + 1 \end{pmatrix}$ where $v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$.

Answer: This mapping is not linear. We have shown in class that if F is linear then necessarily F(0) = 0. This condition is not true here, however: $F(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

• $F : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $F(v) := v - \left(\begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot v \right) \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$

Answer: Yes, this mapping is linear. For example, let us consider the condition that requires that for every linear mapping F(u+w) = F(u) + F(w):

$$F(u+w) = (u+w) - \left(\binom{1}{2} \cdot (u+w)\right)\binom{2}{1}$$
$$= u - \left(\binom{1}{2} \cdot u\right)\binom{2}{1} + w - \left(\binom{1}{2} \cdot w\right)\binom{2}{1} = F(u) + F(w).$$

The second condition is equally trivially verified.

• $F: P_2(t) \to \mathbb{R}^2$ defined by $F(p(t)) := \begin{pmatrix} a \\ b \end{pmatrix}$ when applied to a polynomial $p(t) = a + bt + ct^2 \in P_2(t)$.

Answer: Yes, this mapping is also linear.

• $F: \mathbb{R}^{2\times 2} \to \mathbb{S}^{2\times 2}$ defined by $F(A) := \frac{1}{2}(A + A^T)$ when applied to a matrix $A \in \mathbb{R}^{2\times 2}$. ($\mathbb{S}^{2\times 2}$ is again the space of *symmetric* 2-by-2 matrices.)

Answer: This one is linear as well.

• $F: \mathbb{R}^{2 \times 2} \to \mathbb{R}$ defined by $F(A) := \det(A)$ when applied to a matrix $A \in \mathbb{R}^{2 \times 2}$.

Answer: This mapping is not linear. While F(0) = 0 (where the argument is the zero matrix), it is easy to verify from the definition of the determinant that $F(A + B) \neq \det(A) + \det(B)$. It is even simpler to verify that $F(kA) = k^2 A$ for $k \in \mathbb{R}$, also violating the requirements for a linear mapping.

(see backside)

Problem 2 (5 points): Consider the mapping $F : \mathbb{R}^2 \to \mathbb{R}^3$ defined by $F(v) := \begin{pmatrix} 1 & 3 \\ 2 & 6 \\ -3 & -9 \end{pmatrix} v$ where $v \in \mathbb{R}^2$. Answer the following questions about this mapping:

• Is it linear?

Answer: Yes.

• What are its domain and image space?

Answer: The domain is \mathbb{R}^2 : one can apply this mapping to all two-dimensional vectors. The image space is \mathbb{R}^3 since the output of the mapping is a three-dimensional vector.

• What is the kernel, ker F, of this mapping and what is the dimension of ker F?

Answer: The kernel of a mapping is the set of all vectors so that if the mapping is applied to such a vector the result is zero. In the current case, all vectors of the form $v = (3a, -a)^T$ for any $a \in \mathbb{R}$ are mapped to zero, so the kernel is the vector space of all vectors of this form:

ker
$$F = \{v \in \mathbb{R}^2 : v \text{ has the form } v = (3a, -a)^T \}.$$

The elements of this set form a line. The dimension of the kernel is one.

• What is the image, Im F, of this mapping and what is the dimension of Im F?

Answer: The image of a mapping is the set of all possible results of the mapping. Given any input vector $v = (v_1, v_2)^T$ the output is always of the form $F(v) = (v_1 + 3v_2) \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$. All of these points lie on a line. Consequently, the dimension of the image of F is also one.

• Is there an inverse of this mapping and if not why? An inverse mapping $B : \mathbb{R}^3 \to \mathbb{R}^2$ would satisfy B(F(v)) = v for all $v \in \mathbb{R}^2$ and F(B(u)) = u for all $u \in \mathbb{R}^3$.

Answer: No, there is no inverse. As discussed in class, the dimension of the image of a mapping can not be larger than the dimension of its inputs. Since F maps \mathbb{R}^2 onto a single line in \mathbb{R}^3 (namely the line that forms its image), any mapping B from \mathbb{R}^3 to \mathbb{R}^2 would necessarily have to map this line into either a point or a line in \mathbb{R}^2 . Thus, considering all points $v \in \mathbb{R}^2$, the points given by B(F(u)) would all lie along a single line in \mathbb{R}^2 . In other words, there must be points u that do not lie on this line for which then consequently $B(F(u)) \neq u$.

There are multiple other ways to think about this problem that all show that no such inverse can exist.