MATH 601: QuIz 9 (11/07/2012)

NAME:

UIN:

Problem 1 (5 points): For each of the following mappings, state whether it is linear or not. If it is not linear, explain why.

- $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by

$$
F(v):=\binom{v_{1}+1}{v_{2}+1} \quad \text { where } v=\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) .
$$

Answer: This mapping is not linear. We have shown in class that if F is linear then necessarily $F(0)=0$. This condition is not true here, however: $F(0)=\binom{1}{1}$.

- $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $\quad F(v):=v-\left(\binom{1}{2} \cdot v\right)\binom{2}{1}$.

Answer: Yes, this mapping is linear. For example, let us consider the condition that requires that for every linear mapping $F(u+w)=F(u)+F(w)$:

$$
\begin{aligned}
F(u+w) & =(u+w)-\left(\binom{1}{2} \cdot(u+w)\right)\binom{2}{1} \\
& =u-\left(\binom{1}{2} \cdot u\right)\binom{2}{1}+w-\left(\binom{1}{2} \cdot w\right)\binom{2}{1}=F(u)+F(w) .
\end{aligned}
$$

The second condition is equally trivially verified.

- $F: P_{2}(t) \rightarrow \mathbb{R}^{2}$ defined by $\quad F(p(t)):=\binom{a}{b} \quad$ when applied to a polynomial $p(t)=a+b t+c t^{2} \in P_{2}(t)$.

Answer: Yes, this mapping is also linear.

- $F: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{S}^{2 \times 2}$ defined by $\quad F(A):=\frac{1}{2}\left(A+A^{T}\right) \quad$ when applied to a matrix $A \in \mathbb{R}^{2 \times 2}$. $\left(\mathbb{S}^{2 \times 2}\right.$ is again the space of symmetric 2 -by- 2 matrices.)

Answer: This one is linear as well.

- $F: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}$ defined by $F(A):=\operatorname{det}(A) \quad$ when applied to a matrix $A \in \mathbb{R}^{2 \times 2}$.

Answer: This mapping is not linear. While $F(0)=0$ (where the argument is the zero matrix), it is easy to verify from the definition of the determinant that $F(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B)$. It is even simpler to verify that $F(k A)=k^{2} A$ for $k \in \mathbb{R}$, also violating the requirements for a linear mapping.

Problem 2 (5 points): Consider the mapping $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $\quad F(v):=\left(\begin{array}{cc}1 & 3 \\ 2 & 6 \\ -3 & -9\end{array}\right) v \quad$ where $v \in \mathbb{R}^{2}$. Answer the following questions about this mapping:

- Is it linear?

Answer: Yes.

- What are its domain and image space?

Answer: The domain is \mathbb{R}^{2} : one can apply this mapping to all two-dimensional vectors. The image space is \mathbb{R}^{3} since the output of the mapping is a three-dimensional vector.

- What is the kernel, ker F, of this mapping and what is the dimension of ker F ?

Answer: The kernel of a mapping is the set of all vectors so that if the mapping is applied to such a vector the result is zero. In the current case, all vectors of the form $v=(3 a,-a)^{T}$ for any $a \in \mathbb{R}$ are mapped to zero, so the kernel is the vector space of all vectors of this form:

$$
\text { ker } F=\left\{v \in \mathbb{R}^{2}: v \text { has the form } v=(3 a,-a)^{T}\right\}
$$

The elements of this set form a line. The dimension of the kernel is one.

- What is the image, $\operatorname{Im} F$, of this mapping and what is the dimension of $\operatorname{Im} F$?

Answer: The image of a mapping is the set of all possible results of the mapping. Given any input vector $v=\left(v_{1}, v_{2}\right)^{T}$ the output is always of the form $F(v)=\left(v_{1}+3 v_{2}\right)\left(\begin{array}{c}1 \\ 2 \\ -3\end{array}\right)$. All of these points lie on a line. Consequently, the dimension of the image of F is also one.

- Is there an inverse of this mapping and if not why? An inverse mapping $B: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ would satisfy $B(F(v))=v$ for all $v \in \mathbb{R}^{2}$ and $F(B(u))=u$ for all $u \in \mathbb{R}^{3}$.

Answer: No, there is no inverse. As discussed in class, the dimension of the image of a mapping can not be larger than the dimension of its inputs. Since F maps \mathbb{R}^{2} onto a single line in \mathbb{R}^{3} (namely the line that forms its image), any mapping B from \mathbb{R}^{3} to \mathbb{R}^{2} would necessarily have to map this line into either a point or a line in \mathbb{R}^{2}. Thus, considering all points $v \in \mathbb{R}^{2}$, the points given by $B(F(u))$ would all lie along a single line in \mathbb{R}^{2}. In other words, there must be points u that do not lie on this line for which then consequently $B(F(u)) \neq u$.
There are multiple other ways to think about this problem that all show that no such inverse can exist.

