MATH 601: Quiz 7 (10/17/2012)

Name:

We call a set V a vector space over the scalar field K if

- a vector addition is defined so that $\forall u, v \in V: u+v \in V$
- a scalar multiplication is defined so that $\forall u \in V, k \in K: k u \in V$
and in addition these two operations satisfy the following eight properties ("axioms"):

A1: $\forall u, v, w \in V:(u+v)+w=u+(v+w)$
A2: $\exists w \in V$ so that $\forall u \in V: u+w=u$ (i.e., there is a unique zero element in the vector space)

A3: $\forall u \in V$ there exists $w \in V$ so that $u+w=0$. We denote $w=-u$

A4: $\forall u, v \in V: u+v=v+u$.

In class, we have seen examples of vector spaces and examples of cases that are not vector spaces. For each of the following five examples, examine whether they are vector spaces; if you think that they are not, state at least one of the eight axioms that are violated. (2 points for each case.)

- $V=\mathbb{R}^{2}, K=\mathbb{R}$ where we define $\binom{u_{1}}{u_{2}}+\binom{v_{1}}{v_{2}}=\binom{u_{1}+v_{2}}{u_{2}+v_{1}}, k\binom{u_{1}}{u_{2}}=\binom{k u_{1}}{k u_{2}}$.

Answer: Like in many of the other cases below, there are multiple axioms that are violated here. The simplest to verify is that with the addition defined here, $u+v \neq v+u$ (A4).

- $V=\mathbb{R}^{2}, K=\mathbb{C}$ where we define $\binom{u_{1}}{u_{2}}+\binom{v_{1}}{v_{2}}=\binom{u_{1}+v_{1}}{u_{2}+v_{2}}, k\binom{u_{1}}{u_{2}}=\binom{k u_{1}}{k u_{2}}$.

Answer: Here, what happens is that if we multiply a vector with two elements in \mathbb{R} by a number $k \in \mathbb{C}$ with a nonzero imaginary part, then we obtain a vector whose elements are no longer in \mathbb{R}. In other words, there are $k \in K$ so that $k u \notin V$ (violating the definition of a scalar multiplication).

- $V=\left\{x \in \mathbb{R}^{2}:\|x\| \leq 1\right\}$ (i.e., all vectors in \mathbb{R}^{2} that are at most one unit away from the origin), $K=\mathbb{R}$ where we define $\binom{u_{1}}{u_{2}}+\binom{v_{1}}{v_{2}}=\binom{u_{1}+v_{1}}{u_{2}+v_{2}}, k\binom{u_{1}}{u_{2}}=\binom{k u_{1}}{k u_{2}}$.

Answer: V contains only vectors with a distance from the origin less than or equal to one. On the other hand, because we use the usual definition of the vector addition, we can consider, for example $u=\binom{1}{0}, v=\binom{0}{1}$ (both in V) and find that $u+v=\binom{1}{1} \notin V$ (violating the definition of a vector addition).

- $V=\left\{x \in \mathbb{R}^{2}:\|x\| \leq 1\right\}$ (i.e., all vectors in \mathbb{R}^{2} that are at most one unit away from the origin), $K=\mathbb{R}$ where we define $\binom{u_{1}}{u_{2}}+\binom{v_{1}}{v_{2}}=\frac{1}{\sqrt{\left(u_{1}+v_{1}\right)^{2}+\left(u_{2}+v_{2}\right)^{2}}}\binom{u_{1}+v_{1}}{u_{2}+v_{2}}, k\binom{u_{1}}{u_{2}}=\binom{k u_{1}}{k u_{2}}$.

Answer: Here, the addition has been modified in such a way that the sum of two vectors always has a distance from the origin equal to one (let's ignore for a moment the case where the fraction becomes singular). So the sum of two vectors is indeed again a vector in V. However, there no longer is a universal zero vector. For example, if we choose $w=\binom{0}{0}$ as the zero vector then

$$
u+w=\frac{1}{\sqrt{u_{1}^{2}+u_{2}^{2}}}\binom{u_{1}}{u_{2}}
$$

which in general is not equal to u (A2).

- V is the set of all functions $f(t)$ where the argument t is from the interval $[0,1]$ and where $f(t)$ satisfies $-1 \leq f(t) \leq 1, K=\mathbb{R}$. Addition and scalar multiplication of functions are defines as usual.

Answer: This is essentially a variant of the third example: consider for example the function $f(t)=1$ which is clearly in V. But $f+f$ is a function that is equal to 2 everywhere and so is no longer in V.

