MATH 601: Quiz 3 (9/19/2012)

Name:

UIN:

Problem 1: For the following two matrices, do the following: (i) State whether it is invertible. If it is in fact invertible, then also: (ii) Show the inverse A^{-1} of the matrix; (iii) verify that it is indeed the inverse by multiplying $A^{-1} A$ and showing that it is equal to the identity matrix I.

Part a (2 points): $A_{1}=\left(\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right)$
Answer: As discussed in class, the general form of an inverse of a 2×2 matrix $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ is $A^{-1}=\frac{1}{a_{11} a_{22}-a_{12} a_{21}}\left(\begin{array}{cc}a_{22} & -a_{12} \\ -a_{21} & a_{11}\end{array}\right)$. It is easy to verify by just multiplying out that $A^{-1} A=I$. The factor $a_{11} a_{22}-a_{12} a_{21}$ is called the determinant of the matrix A.
The matrix A_{1} is not invertible because its determinant is zero and the fraction in the formula for A^{-1} does not exist.

Part b (3 points): $A_{2}=\left(\begin{array}{ll}1 & 2 \\ 2 & 6\end{array}\right)$
Answer: Using the formula above, the inverse of this matrix is $A_{2}^{-1}=\frac{1}{1 \cdot 6-2 \cdot 2}\left(\begin{array}{cc}6 & -2 \\ -2 & 1\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}6 & -2 \\ -2 & 1\end{array}\right)$. We find that

$$
A_{2}^{-1} A_{2}=\frac{1}{2}\left(\begin{array}{cc}
6 & -2 \\
-2 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
2 & 6
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
6 \cdot 1+(-2) \cdot 2 & 6 \cdot 2+(-2) \cdot 6 \\
(-2) \cdot 1+1 \cdot 2 & (-2) \cdot 2+1 \cdot 6
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I .
$$

Problem 2 (2 points): Define what it means for a matrix to be invertible. (I.e., give the definition of invertibility. You don't need to state conditions that guarantee that a matrix is in fact invertible.)

Answer: We call a square matrix A invertible if there is a different matrix B so that $B A=I$ where I is the identity matrix. If such a matrix B exists, then we typically denote it by the syntax A^{-1}.

Problem 3 (3 points): Show that the following statement is true: Let A be an invertible matrix. Then $B=A^{2}=A A$ is also an invertible matrix and its inverse $B^{-1}=\left(A^{2}\right)^{-1}$ equals $B^{-1}=\left(A^{-1}\right)^{2}$.

Answer: To show that $B=A^{2}=A A$ is invertible, all we need to do is find another matrix C so that $C B=I$. This is easy, in fact, the question already gives it away: $C=\left(A^{-1}\right)^{2}$. We can verify this by just multiplying out:

$$
C B=\left(A^{-1}\right)^{2} A^{2}=A^{-1} A^{-1} A A=A^{-1}\left(A^{-1} A\right) A=A^{-1} I A=A^{-1} A=I .
$$

In other words, $C=\left(A^{-1}\right)^{2}$ is indeed an inverse of $B=A^{2}$ and consequently B is invertible.

