MATH 601: Quiz 3 (9/19/2012)

NAME:

Problem 1: Let

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 0 \\
0 & 1
\end{array}\right), \quad B=\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 2
\end{array}\right), \quad u=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad v=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

For the following statements, determine whether they are mathematically valid and if so, compute their value:

1. $A B=\left(\begin{array}{lll}1 & 4 & 7 \\ 3 & 6 & 9 \\ 0 & 1 & 2\end{array}\right)$
2. $B^{T} A$: not defined because the dimensions of $B^{T} \in \mathbb{R}^{3 \times 2}$ and $A \in \mathbb{R}^{3 \times 2}$ don't match up
3. $B^{T} A^{T}=(A B)^{T}=\left(\begin{array}{lll}1 & 4 & 7 \\ 3 & 6 & 9 \\ 0 & 1 & 2\end{array}\right)^{T}=\left(\begin{array}{lll}1 & 3 & 0 \\ 4 & 6 & 1 \\ 7 & 9 & 2\end{array}\right)$

Note how we could re-use something that we had previously computed.
4. $\operatorname{tr}(A)$: not defined because A is not square
5. $\operatorname{tr}(A B)=\operatorname{tr}\left(\begin{array}{lll}1 & 4 & 7 \\ 3 & 6 & 9 \\ 0 & 1 & 2\end{array}\right)=1+6+2=9$
6. $\operatorname{tr}(B A)=\operatorname{tr}(A B)=9$

Note how we again could re-use something that we had previously computed.

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 0 \\
0 & 1
\end{array}\right), \quad B=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2
\end{array}\right), \quad u=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad v=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

For the following statements, determine whether they are mathematically valid and if so, compute their value:
7. $u \times v=\left(\begin{array}{c}1 \cdot 3-1 \cdot 2 \\ 1 \cdot 1-1 \cdot 3 \\ 1 \cdot 2-1 \cdot 1\end{array}\right)=\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)$
8. $u \cdot v=1+2+3=6$
9. $u^{T} A=\left(\begin{array}{ll}4 & 3\end{array}\right)$
I.e., we interpret the result as a row vector or a 1×2 matrix.
10. $A u$: not defined because the dimensions of $A \in \mathbb{R}^{3 \times 2}$ and $u \in \mathbb{R}^{3} \simeq \mathbb{R}^{3 \times 1}$ don't match up
11. $B v=\binom{14}{8}$
12. $u^{T} A B v$: We can rewrite this as $\left(u^{T} A\right)(B v)$ where the two factors are a matrix with just one row and a matrix with just one column. The product of a row matrix and a column matrix can be interpreted as the dot product between two vectors, i.e., we can rewrite this as $\left(u^{T} A\right)^{T} \cdot(B v)=\binom{4}{3} \cdot\binom{14}{8}=$ $56+24=80$. Here, once more, we can reuse something we have previously computed. Of course, we could have simply multiplied everything out and arrived at the same result.
13. $u \times(B v)$: not defined because the cross product is only defined for two vectors in \mathbb{R}^{3} but $B v$ is a vector in \mathbb{R}^{2}.

Note: The quiz was graded so that questions $1,5,7,8,9,11,12$ were counted as one point each, and questions $2,3,4,6,10$, 13 with 0.5 points because the answer could re-use a result obtained earlier.

