MATH 601: Quiz 2 (9/10/2012)

NAME:
UIN:

Problem 1: Find a parametric representation (using a parameter t) of a line that goes through points $P=(1,1)$ and $Q=(3,1)$.

Answer: The located vector pointing from P to Q is given by $\overrightarrow{P Q}=Q-P=(2,0)$. Then, according to what we've discussed in class, one parameterization of the line that goes through both of these points is

$$
x(t)=P+t \overrightarrow{P Q}=(1,1)+t(2,0)
$$

Note, in particular, that $x(0)=P$ and $x(1)=Q$ - in other words, for $t=0$ and $t=1$ the line is at P and Q, respectively. Of course, since the parameterization above describes a line, and we have just shown that the line goes through both P and Q, we have just found the single, unique line that goes through these two points.

Problem 2: In class we have discussed that the collection of points $\{x\}$ that make up a hyperplane all satisfy the equation $a \cdot x=\alpha$ for some $a \in \mathbb{R}^{n}, \alpha \in \mathbb{R}$. Providing a, α then completely describes a hyperplane. Find $a \in \mathbb{R}^{3}, \alpha \in \mathbb{R}$ that describes the hyperplane in \mathbb{R}^{3} (i.e., a plane) that contains the point $P=(1,1,1)$ and that is perpendicular to the vector $u=(2,2,2)$.

Answer: In class we have shown that if $H=\{x\}$ is the hyperplane characterized by a, α, then a is a vector that is in fact perpendicular to the plane because it is perpendicular to the vector $\overrightarrow{P Q}$ for any arbitrarily chosen two points $P, Q \in H$.
Here, we are asked to find a plane that is perpendicular to the vector $u=(2,2,2)$, i.e., u is perpendicular to the plane. So we can take $a=u$ and we already know that the points x of the plane have to satisfy

$$
a \cdot x=2 x_{1}+2 x_{2}+2 x_{3}=\alpha
$$

for an as yet unknown value of α. On the other hand, we know that the plane must go through the point $P=(1,1,1)$. This means that P is a point of this plane, so we know that

$$
a \cdot P=(2,2,2) \cdot(1,1,1)=6=\alpha
$$

as well. This provides us with the value for α.
To sum up, one characterization of the plane is given by $a=(1,1,1), \alpha=6$.
Note that there are many other parameterizations. For example, we could have chosen $a=(3,3,3), \alpha=18$, or $a=(-1,-1,-1), \alpha=-6$; both of these choices characterize the very same plane as the one we found above, just in a different way.

