
http://www.dealii.org/ Wolfgang Bangerth

Finite element methods in
scientific computing

Wolfgang Bangerth, Texas A&M University

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementing the finite element method

A brief re-hash of the FEM, using the Poisson equation:

We start with the strong form:

...and transform this into the weak form by multiplying
from the left with a test function:

The solution of this is a function u(x) from an infinite-

dimensional function space.

−Δu=f

(∇ φ ,∇ u)=(φ , f) ∀φ

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementing the finite element method

Since computers can't handle objects with infinitely many
coefficients, we seek a finite dimensional function of the
form

To determine the N coefficients we use the weak form and
test with the N basis functions:

If the basis functions are linearly independent, this yields N
equations for the N coefficients.

uh=∑i=1

N
U iφi(x)

(∇ φi ,∇ uh)=(φi , f) ∀i=1. ..N

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementing the finite element method

Practical question 1: How to define the basis functions?

Answer: In the finite element, this done using the
following concepts:

● Subdivision of the domain into a mesh
● Each cell of the mesh is a mapping of the reference cell
● Definition of basis functions on the reference
● Each shape function corresponds to a degree of freedom

on the global mesh

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementing the finite element method

Practical question 1: How to define the basis functions?

Answer: In the finite element, this done using the
following concepts:

● Subdivision of the domain into a mesh
● Each cell of the mesh is a mapping of the reference cell
● Definition of basis functions on the reference
● Each shape function corresponds to a degree of freedom

on the global mesh

Concepts in red will correspond to things we need to
implement in software, explicitly or implicitly.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementing the finite element method

Given the expansion , we can expand the
bilinear form

to obtain:

This is a linear system

with

(∇ φi ,∇ uh)=(φi , f) ∀i=1. ..N

∑ j=1

N
(∇φi ,∇ φ j)U j=(φi , f) ∀ i=1. ..N

uh=∑i=1

N
U iφi(x)

AU=F

Aij=(∇ φi ,∇ φ j) F i=(φi , f)

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementing the finite element method

Practical question 2: How to compute

Answer: By mapping back to the reference cell...

...and quadrature:

Similarly for the right hand side F.

Aij=(∇ φi ,∇ φ j) F i=(φi , f)

Aij = (∇ φi ,∇ φ j)

 = ∑K∫K
∇ φi(x)⋅∇ φ j (x)

 = ∑K∫K̂
J−1

(x̂) ∇̂ φ̂i(x̂) ⋅ J−1
(x̂) ∇̂ φ̂ j (x̂) ∣det J (x̂)∣

Aij ≈ ∑K ∑q=1

Q
J−1(x̂q) ∇̂ φ̂i(x̂q) ⋅ J−1(x̂q) ∇̂ φ̂ j(x̂q)(x̂q) ∣det J (x̂q)∣ wq

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementing the finite element method

Practical question 3: How to store the matrix and
vectors of the linear system

Answers:
● A is sparse, so store it in compressed row format
● U,F are just vectors, store them as arrays
● Implement efficient algorithms on them, e.g. matrix-

vector products, preconditioners, etc.
● For large-scale computations, data structures and

algorithms must be parallel

AU=F

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementing the finite element method

Practical question 4: How to solve the linear system

Answers: In practical computations, we need a variety of
● Direct solvers
● Iterative solvers
● Parallel solvers

AU=F

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementing the finite element method

Practical question 5: What to do with the solution of the
linear system

Answers: The goal is not to solve the linear system, but
to do something with its solution:

● Visualize
● Evaluate for quantities of interest
● Estimate the error

These steps are often called postprocessing the solution.

AU=F

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementing the finite element method

Together, the concepts we have identified lead to the
following collection of components that all appear
(explicitly or implicitly) in finite element codes:

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementation issues: Triangulations

Everyone's first triangulation implementation looks
somewhat like this:

However, this is not a good design, for various reasons.

struct Vertex { double coordinates[2]; };
struct Cell { int vertex_indices[3]; };

struct Triangulation {
 Vertex vertices[];
 Cell cells[];
};

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementation issues: Triangulations

Reason 1: You expose implementation details to the user
of this class (lack of encapsulation):

Every piece of code that uses this triangulation makes use
of the representation of data in this particular form. You
can never again change it because you'd have to change
things everywhere.

struct Vertex { double coordinates[2]; };
struct Cell { int vertex_indices[3]; };

struct Triangulation {
 Vertex vertices[];
 Cell cells[];
};

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementation issues: Triangulations

Reason 2: This assumes that the mesh is static, i.e., that
the number of vertices and cells never changes.

In reality, most modern codes today use adaptive mesh
refinement in which the mesh changes all the time.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementation issues: Triangulations

Reason 3: In reality, we need to know much more about a
triangulation:

The problem with this is that all this data is consecutive in
memory, when we typically only want to access one field
at a time for all cells. This leads to cache misses.

struct Cell {
 int vertex_indices[3];
 int neighbor_indices[3];
 int material_index;
 int subdomain_index;
 void* user_data;
 ...
};

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementation issues: Triangulations

A better approach: Identify which operations we need:
● Add and remove cells
● Iterate over all cells
● Ask cells for information

Note: Separate the interface from the data structure!

struct Cell {
 int vertex_index (int vertex) const;
 int neighbor_index (int neighbor) const;
 int material_index ();
 int subdomain_index ();
 ...
};

struct Triangulation {
 typedef … cell_iterator; // acts like a Cell*
 cell_iterator begin () const;
 cell_iterator end () const;
};

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementation issues: Triangulations

An example implementation:
struct Triangulation {
 cell_iterator begin () const { return cells.begin(); }
 ...
 private:
 std::list<Cell> cells;
 std::vector<int> cell_to_vertex_array;
 std::vector<Vertex> vertices;
};

struct Cell {
 Vertex vertex (int vertex) const {
 int vertex_index
 = tria->cell_to_vertex_array[index*3 + vertex];
 return tria->vertices[vertex_index];
 }
 private:
 Triangulation *tria;
 int index;
};

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementation issues: Triangulations

How triangulations are really stored today:

An adaptively refined mesh starting from a single cell can
be considered a quad-tree!

The 3d equivalent of this tree is an octree.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementation issues: Triangulations

How triangulations are really stored today:

An adaptively refined mesh starting from an unstructured
coarse mesh is a quad-forest!

The 3d equivalent of this tree is an oct-forest.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementation issues: Finite elements

While most finite element codes have only one
implementation of the Triangulation class, they typically
have many different element types implemented:

class FiniteElement { // an interface class
 int dofs_per_vertex () const = 0;
 int dofs_per_edge () const = 0;
 int dofs_per_triangle () const = 0;

 double shape_value (int i, Point p) const = 0;
 … … shape_grad (int i, Point p) const = 0;
};

class FE_Lagrange : public FiniteElement {…};
class FE_RaviartThomas : public FiniteElement {…};
class FE_Nedelec : public FiniteElement {…};
… …

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementation issues: Quadrature/Mapping

The same is true for quadrature objects:

Mapping classes are implemented similarly, providing
linear, quadrature, … cartesian, mappings.

class Quadrature { // an interface class
 Point quadrature_point (int q) const = 0;
 Double quadrature_weight (int q) const = 0;
};

class Q_Gauss : public Quadrature {…};
class Q_Trapezoidal : public Quadrature {…};
… …

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementation issues: FEValues objects

Remember that our integration procedure looked like this:

Note: This formula references
● Shape functions (the finite element)
● Jacobians (the mapping)
● Quadrature points and weights (the quadrature)

It turns out that in practice, one never references
● Shape functions without mappings
● Mappings with shape functions
● Shape functions and mappings without quadrature

FEValues is a way to present the application with an
interface to exactly the things it needs (not 3 interfaces).

Aij ≈ ∑K ∑q=1

Q
J−1(x̂q) ∇̂ φ̂i(x̂q) ⋅ J−1(x̂q) ∇̂ φ̂ j(x̂q)(x̂q) ∣det J (x̂q)∣ wq

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementation issues: FEValues objects

Remember that our integration procedure looked like this:

Note:
● Some of these terms change from cell to cell

● Some are always the same provided we use the same
shape functions and quadrature points on each cell:

● Furthermore, even in the computation of the variable
components, some parts may always be the same.

Efficient codes should cache the stable components!

J−1(x̂q), ∣det J (x̂q)∣

∇̂ φ̂i(x̂q), wq

Aij ≈ ∑K ∑q=1

Q
J−1(x̂q) ∇̂ φ̂i(x̂q) ⋅ J−1(x̂q) ∇̂ φ̂ j(x̂q)(x̂q) ∣det J (x̂q)∣ wq

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementation issues: FEValues objects

In deal.II, the FEValues class is such a cache:
● At the beginning of a loop over all cells, it computes the

immutable components once (values, gradients on
reference cell)

● Whenever we move from one cell to the next, it re-
computes the variable parts (things that depend on the
location of vertices)

● In fact, even for the latter class it analyzes whether the
next cell is similar to the previous one to save
computations. E.g.:
- If the next cell is just a translation of the previous one,
 then the Jacobian matrix is the same.
- If it is a translation + rotation, then the determinant of
 the Jacobian is the same

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementation issues: Linear algebra

Appropriate data structures for vectors are obvious: Arrays.

For sparse matrices, one typically uses the compressed
sparse compressed (CSR) format:

● Have one long integer array in which we store the column
numbers of all nonzero entries in the matrix

● Have one equally long floating point array in which we
store the values

● Have one array that indicates the beginning of each row

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementation issues: Linear algebra

Compressed sparse compressed (CSR) example:

With zero-based indexing:
● “Rowstart” array: 0, 2, 5, 8 10
● “Colnum” array: 0,1 0,1,2 1,2,3 2,3
● “Values” array: 2,-1 -1,2,-1 -1,2,-1 -1,2

Finding an array costs O(log m) where m=bandwidth.

Matrix-vector product costs O(Nm).

Sometimes one sorts the diagonal to the front of each row.

(
2 −1 0 0

−1 2 −1 0
0 −1 2 −1
0 0 −1 2

)

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Implementation issues: Solving systems

Solvers and preconditioners:
For “simple” problems with up to 100,000 unknowns:

● Can use iterative solvers such as CG/GMRES/...
● Can use sparse direct solvers (such as UMFPACK,

Matlab's \-operator)
● Sparse direct solvers often faster, always work

For problems with up to a few million unknowns:
● CG/GMRES with “simple preconditioners” (Jacobi, SSOR)

For “big” problems (several million to billions of unknowns):
● CG/GMRES
● We need a parallelizable preconditioner (AMG, block

decompositions)

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

The bigger picture

Numerical analysis and finite element/difference/volume
methods are only one piece in the scientific computing
world.

The goal is always the simulation of real processes
for prediction and optimization.

This also involves:
● Understanding the application
● Implementation of numerical methods
● Understanding the complexity of algorithms
● Understanding the hardware characteristics
● Interfacing with pre- and postprocessing tools

Together, these are called High Performance Computing.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Examples of FEM applications in HPC

Examples from a wide variety of fields in my own work:

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Workflow for HPC in PDEs

Step 1: Identify geometry and details of the model

May involve tens of thousands of pieces, very labor
intensive, interface to designers and to manufacturing

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Workflow for HPC in PDEs

Step 2: Mesh generation and maybe partitioning
(preprocessing)

May involve 10s of millions or more of cells; requires lots
of memory; very difficult to parallelize

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Workflow for HPC in PDEs

Step 2: Mesh generation and maybe partitioning
(preprocessing)

May involve 10s of millions or more of cells; requires lots
of memory; very difficult to parallelize

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Workflow for HPC in PDEs

Step 3: Solve model on this mesh using finite elements,
finite volumes, finite differences, …

Involves some of the biggest computations ever done,
10,000s of processors, millions of CPU hours, wide variety
of algorithms

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Workflow for HPC in PDEs

Step 4: Visualization to learn from the numerical results

Can be done in parallel, difficulty is amounts of data.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Workflow for HPC in PDEs

Step 4: Visualization to learn from the numerical results

Goal: Not to plot data, but to provide insight!

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Workflow for HPC in PDEs

Step 5: Repeat

● To improve on the design

● To investigate different conditions (speed, altitude,
angle of attack, …)

● To vary physical parameters that may not be known
exactly

● To vary parameters of the numerical model (e.g. mesh
size)

● To improve match with experiments

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Workflow for HPC in PDEs

Each of these steps...
● Identify geometry and details of the model
● Preprocess: Mesh generation
● Solve problem with FEM/FVM/FDM
● Postprocess: Visualize
● Repeat

...needs software that requires:
● domain knowledge
● knowledge of the math. description of the problem
● knowledge of algorithm design
● knowledge of software design and management

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Software issues in HPC

Ultimately, HPC is about applications, not just algorithms
and their analysis.

Thus, we need to consider the issue of software that
implements these applications:

● How complex is the software?
● How do we write software? Are there tools?
● How do we verify the correctness of the software?
● How do we validate the correctness of the model?

● Testing
● Documentation
● Social issues

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Complexity of software

Many HPC applications are several orders of magnitude
larger than everything you have probably ever seen!

For example, a crude measure of complexity is the number
of lines of code in a package:

● Deal.II has 550k
● PETSc has 500k
● Trilinos has 3.1M

At this scale, software development does not work the
same as for small projects:

● No single person has a global overview
● There are many years of work in such packages
● No person can remember even the code they wrote

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Complexity of software

The only way to deal with the complexity of such software
is to:

● Modularize: Different people are responsible for
different parts of the project.

● Define interfaces: Only a small fraction of functions in a
module is available to other modules

● Document: For users, for developers, for authors, and
at different levels

● Test, test, test

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

How do we write software

Successful software must follow the prime directive of
software:

● Developer time is the single most scarce resource!

As a consequence (part 1):
● Do not reinvent the wheel: use what others have

already implemented (even if it's slower)
● Use the best tools (IDEs, graphical debuggers, graphical

profilers, version control systems…)
● Do not make yourself the bottleneck (e.g. by not writing

documentation)

● Delegate. You can't do it all.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

How do we write software

Successful software must follow the prime directive of
software:

● Developer time is the single most scarce resource!

As a consequence (part 2):
● Re-use code, don't duplicate
● Use strategies to avoid introducing bugs

● Test, test, test:
- The earlier a bug is detected the easier it is to find
- Even good programmers spend more time debugging
 code than writing it in the first place

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Verification & validation (V&V): Verification

Verification refers to the process of ensuring that the
software solves the problem it is supposed to solve:

“The program solves the problem correctly”

A common strategy to achieve this is to...

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Verification refers to the process of ensuring that the
software solves the problem it is supposed to solve:

“The program solves the problem correctly”

A common strategy to achieve this is to test test test:
● Unit tests verify that a function/class does what it is

supposed to do (assuming that correct result is known)
● Integration tests verify a whole algorithm (e.g. using

what is known as the Method of Manufactured
Solutions)

● Write regression tests that verify that the output of a
program does not change over time

Software that is not tested does not
produce the correct results!

(Note that I say “does not”, and not “may not”!)

Verification & validation (V&V): Verification

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Validation refers to the process of ensuring that the
software solves a formulation that accurately represents
the application:

“The program solves the correct problem”

The details of this go beyond this class.

Verification & validation (V&V): Verification

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Testing

Let me repeat the fundamental truth about software with
more than a few 100 lines of code:

Software that is not tested does not
produce the correct results!

No software that does not run lots of automatic tests can
be good/usable.

As just one example:
● Deal.II runs ~2300 tests after every single change
● This takes ~10 CPU hours every time
● The test suite has another 250,000 lines of code.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Documentation

Documentation serves different purposes:
● It spells out to the developer what the implementation

of a function/class is supposed to do (it's a contract)
● It tells a user what a function does
● It must come at different levels (e.g. functions, classes,

modules, tutorial programs)

Also:
● Even in small projects, it reminds the author what she

had in mind with a function after some time
● It avoids that everyone has to ask the developer for

information (bottleneck!)
● Document the history of a code by using a version

control system

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Social issues

Most HPC software is a collaborative effort. Some of the
most difficult aspects in HPC are of social nature:

● Can I modify this code?
● X just modified the code but didn't update the

documentation and didn't write a test!
● Y1 has written a great piece of code but it doesn't

conform to our coding style and he's unwilling to adjust
it.

● Y2 seems clever but still has to learn. How do I interest
her to collaborate without accepting subpar code?

● Z agreed to fix this bug 3 weeks ago but nothing has
happened.

● M never replies to emails with questions about his code.

http://www.dealii.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

