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Implementing the finite element method

A brief re-hash of the FEM, using the Poisson equation:

We start with the strong form:

...and transform this into the weak form by multiplying 
from the left with a test function:

The solution of this is a function u(x) from an infinite-

dimensional function space.

−Δu=f

(∇ φ ,∇ u)=(φ , f )     ∀φ
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Implementing the finite element method

Since computers can't handle objects with infinitely many 
coefficients, we seek a finite dimensional function of the 
form

To determine the N coefficients we use the weak form and 
test with the N basis functions:

If the basis functions are linearly independent, this yields N 
equations for the N coefficients.

uh=∑i=1

N
U iφi(x)

(∇ φi ,∇ uh)=(φi , f )     ∀i=1. ..N
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Implementing the finite element method

Practical question 1: How to define the basis functions?

Answer: In the finite element, this done using the 
following concepts:

● Subdivision of the domain into a mesh
● Each cell of the mesh is a mapping of the reference cell
● Definition of basis functions on the reference
● Each shape function corresponds to a degree of freedom 

on the global mesh
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Implementing the finite element method

Practical question 1: How to define the basis functions?

Answer: In the finite element, this done using the 
following concepts:

● Subdivision of the domain into a mesh
● Each cell of the mesh is a mapping of the reference cell
● Definition of basis functions on the reference
● Each shape function corresponds to a degree of freedom 

on the global mesh

Concepts in red will correspond to things we need to 
implement in software, explicitly or implicitly.
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Implementing the finite element method

Given the expansion                        , we can expand the 
bilinear form

to obtain:

This is a linear system

with

(∇ φi ,∇ uh)=(φi , f )     ∀i=1. ..N

∑ j=1

N
(∇φi ,∇ φ j)U j=(φi , f )     ∀ i=1. ..N

uh=∑i=1

N
U iφi(x)

AU=F

Aij=(∇ φi ,∇ φ j)             F i=(φi , f )
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Implementing the finite element method

Practical question 2: How to compute

Answer: By mapping back to the reference cell...

...and quadrature:

Similarly for the right hand side F.

Aij=(∇ φi ,∇ φ j)             F i=(φi , f )

Aij  =  (∇ φi ,∇ φ j)                                                          

     =  ∑K∫K
∇ φi(x )⋅∇ φ j (x)

     =  ∑K∫K̂
J−1

( x̂) ∇̂ φ̂i( x̂)  ⋅ J−1
( x̂) ∇̂ φ̂ j ( x̂)  ∣det J ( x̂)∣

Aij  ≈  ∑K ∑q=1

Q
J−1( x̂q) ∇̂ φ̂i( x̂q)  ⋅ J−1( x̂q) ∇̂ φ̂ j( x̂q)( x̂q)  ∣det J ( x̂q)∣ wq
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Implementing the finite element method

Practical question 3: How to store the matrix and 
vectors of the linear system

Answers:
● A is sparse, so store it in compressed row format
● U,F are just vectors, store them as arrays
● Implement efficient algorithms on them, e.g. matrix-

vector products, preconditioners, etc.
● For large-scale computations, data structures and 

algorithms must be parallel

AU=F
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Implementing the finite element method

Practical question 4: How to solve the linear system

Answers: In practical computations, we need a variety of
● Direct solvers
● Iterative solvers
● Parallel solvers

AU=F
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Implementing the finite element method

Practical question 5: What to do with the solution of the 
linear system

Answers: The goal is not to solve the linear system, but 
to do something with its solution:

● Visualize
● Evaluate for quantities of interest
● Estimate the error

These steps are often called postprocessing the solution.

AU=F
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Implementing the finite element method

Together, the concepts we have identified lead to the 
following collection of components that all appear 
(explicitly or implicitly) in finite element codes:
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Implementation issues: Triangulations

Everyone's first triangulation implementation looks 
somewhat like this:

However, this is not a good design, for various reasons.

struct Vertex {    double coordinates[2];   };
struct Cell   {    int vertex_indices[3];   };

struct Triangulation {
  Vertex vertices[];
  Cell   cells[];
};
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Implementation issues: Triangulations

Reason 1: You expose implementation details to the user 
of this class (lack of encapsulation):

Every piece of code that uses this triangulation makes use 
of the representation of data in this particular form. You 
can never again change it because you'd have to change 
things everywhere. 

struct Vertex {    double coordinates[2];   };
struct Cell   {    int vertex_indices[3];   };

struct Triangulation {
  Vertex vertices[];
  Cell   cells[];
};
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Implementation issues: Triangulations

Reason 2: This assumes that the mesh is static, i.e., that 
the number of vertices and cells never changes.

In reality, most modern codes today use adaptive mesh 
refinement in which the mesh changes all the time.
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Implementation issues: Triangulations

Reason 3: In reality, we need to know much more about a 
triangulation:

The problem with this is that all this data is consecutive in 
memory, when we typically only want to access one field 
at a time for all cells. This leads to cache misses.

struct Cell   {
    int   vertex_indices[3];
    int   neighbor_indices[3];
    int   material_index;
    int   subdomain_index;
    void* user_data;
    ...
};
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Implementation issues: Triangulations

A better approach: Identify which operations we need:
● Add and remove cells
● Iterate over all cells
● Ask cells for information

Note: Separate the interface from the data structure!

struct Cell   {
    int   vertex_index (int vertex) const;
    int   neighbor_index (int neighbor) const;
    int   material_index ();
    int   subdomain_index ();
    ...
};

struct Triangulation  {
    typedef … cell_iterator;    // acts like a Cell*
    cell_iterator begin () const;
    cell_iterator end () const;
};
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Implementation issues: Triangulations

An example implementation:
struct Triangulation  {
    cell_iterator begin () const { return cells.begin(); }
    ...
  private:
    std::list<Cell>     cells;
    std::vector<int>    cell_to_vertex_array;
    std::vector<Vertex> vertices;
};

struct Cell   {
    Vertex   vertex (int vertex) const {
      int vertex_index 
          = tria->cell_to_vertex_array[index*3 + vertex];
      return tria->vertices[vertex_index];
    }
  private:
    Triangulation *tria;
    int index;
};
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Implementation issues: Triangulations

How triangulations are really stored today:

An adaptively refined mesh starting from a single cell can 
be considered a quad-tree!

The 3d equivalent of this tree is an octree.
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Implementation issues: Triangulations

How triangulations are really stored today:

An adaptively refined mesh starting from an unstructured 
coarse mesh is a quad-forest!

The 3d equivalent of this tree is an oct-forest.
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Implementation issues: Finite elements

While most finite element codes have only one 
implementation of the Triangulation class, they typically 
have many different element types implemented:

class FiniteElement {        // an interface class
  int dofs_per_vertex () const = 0;
  int dofs_per_edge () const = 0;
  int dofs_per_triangle () const = 0;

  double shape_value (int i, Point p) const = 0;
  … …    shape_grad  (int i, Point p) const = 0;
};

class FE_Lagrange      : public FiniteElement {…};
class FE_RaviartThomas : public FiniteElement {…};
class FE_Nedelec       : public FiniteElement {…};
… …
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Implementation issues: Quadrature/Mapping

The same is true for quadrature objects:

Mapping classes are implemented similarly, providing 
linear, quadrature, … cartesian, mappings.

class Quadrature {        // an interface class
  Point  quadrature_point (int q) const = 0;
  Double quadrature_weight (int q) const = 0;
};

class Q_Gauss       : public Quadrature {…};
class Q_Trapezoidal : public Quadrature {…};
… …
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Implementation issues: FEValues objects

Remember that our integration procedure looked like this:

Note: This formula references
● Shape functions (the finite element)
● Jacobians (the mapping)
● Quadrature points and weights (the quadrature)

It turns out that in practice, one never references
● Shape functions without mappings
● Mappings with shape functions
● Shape functions and mappings without quadrature

FEValues is a way to present the application with an 
interface to exactly the things it needs (not 3 interfaces).

Aij  ≈  ∑K ∑q=1

Q
J−1( x̂q) ∇̂ φ̂i( x̂q)  ⋅ J−1( x̂q) ∇̂ φ̂ j( x̂q)( x̂q)  ∣det J ( x̂q)∣ wq
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Implementation issues: FEValues objects

Remember that our integration procedure looked like this:

Note:
● Some of these terms change from cell to cell

● Some are always the same provided we use the same 
shape functions and quadrature points on each cell:

● Furthermore, even in the computation of the variable 
components, some parts may always be the same.

Efficient codes should cache the stable components!

J−1( x̂q),  ∣det J ( x̂q)∣

∇̂ φ̂i( x̂q),  wq

Aij  ≈  ∑K ∑q=1

Q
J−1( x̂q) ∇̂ φ̂i( x̂q)  ⋅ J−1( x̂q) ∇̂ φ̂ j( x̂q)( x̂q)  ∣det J ( x̂q)∣ wq
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Implementation issues: FEValues objects

In deal.II, the FEValues class is such a cache:
● At the beginning of a loop over all cells, it computes the 

immutable components once (values, gradients on 
reference cell)

● Whenever we move from one cell to the next, it re-
computes the variable parts (things that depend on the 
location of vertices)

● In fact, even for the latter class it analyzes whether the 
next cell is similar to the previous one to save 
computations. E.g.:
- If the next cell is just a translation of the previous one,
  then the Jacobian matrix is the same.
- If it is a translation + rotation, then the determinant of
  the Jacobian is the same
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Implementation issues: Linear algebra

Appropriate data structures for vectors are obvious: Arrays.

For sparse matrices, one typically uses the compressed 
sparse compressed (CSR) format:

● Have one long integer array in which we store the column 
numbers of all nonzero entries in the matrix

● Have one equally long floating point array in which we 
store the values

● Have one array that indicates the beginning of each row
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Implementation issues: Linear algebra

Compressed sparse compressed (CSR) example:

With zero-based indexing:
● “Rowstart” array:   0, 2, 5, 8 10
● “Colnum” array:     0,1 0,1,2 1,2,3  2,3
● “Values” array:      2,-1 -1,2,-1 -1,2,-1 -1,2

Finding an array costs O(log m) where m=bandwidth.

Matrix-vector product costs O(Nm).

Sometimes one sorts the diagonal to the front of each row.

(
2 −1 0 0

−1 2 −1 0
0 −1 2 −1
0 0 −1 2

)
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Implementation issues: Solving systems

Solvers and preconditioners:
For “simple” problems with up to 100,000 unknowns:

● Can use iterative solvers such as CG/GMRES/...
● Can use sparse direct solvers (such as UMFPACK, 

Matlab's \-operator)
● Sparse direct solvers often faster, always work

For problems with up to a few million unknowns:
● CG/GMRES with “simple preconditioners” (Jacobi, SSOR)

For “big” problems (several million to billions of unknowns):
● CG/GMRES
● We need a parallelizable preconditioner (AMG, block 

decompositions)
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The bigger picture

Numerical analysis and finite element/difference/volume 
methods are only one piece in the scientific computing 
world.

The goal is always the simulation of real processes 
for prediction and optimization. 

This also involves:
● Understanding the application
● Implementation of numerical methods
● Understanding the complexity of algorithms
● Understanding the hardware characteristics
● Interfacing with pre- and postprocessing tools

Together, these are called High Performance Computing.
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Examples of FEM applications in HPC

Examples from a wide variety of fields in my own work:
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Workflow for HPC in PDEs

Step 1: Identify geometry and details of the model

May involve tens of thousands of pieces, very labor 
intensive, interface to designers and to manufacturing
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Workflow for HPC in PDEs

Step 2: Mesh generation and maybe partitioning 
(preprocessing)

May involve 10s of millions or more of cells; requires lots 
of memory; very difficult to parallelize
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Workflow for HPC in PDEs

Step 2: Mesh generation and maybe partitioning 
(preprocessing)

May involve 10s of millions or more of cells; requires lots 
of memory; very difficult to parallelize
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Workflow for HPC in PDEs

Step 3: Solve model on this mesh using finite elements, 
finite volumes, finite differences, …

Involves some of the biggest computations ever done, 
10,000s of processors, millions of CPU hours, wide variety 
of algorithms
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Workflow for HPC in PDEs

Step 4: Visualization to learn from the numerical results

Can be done in parallel, difficulty is amounts of data.
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Workflow for HPC in PDEs

Step 4: Visualization to learn from the numerical results

Goal: Not to plot data, but to provide insight!
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Workflow for HPC in PDEs

Step 5: Repeat

● To improve on the design

● To investigate different conditions (speed, altitude, 
angle of attack, …)

● To vary physical parameters that may not be known 
exactly

● To vary parameters of the numerical model (e.g. mesh 
size)

● To improve match with experiments
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Workflow for HPC in PDEs

Each of these steps...
● Identify geometry and details of the model
● Preprocess: Mesh generation
● Solve problem with FEM/FVM/FDM
● Postprocess: Visualize
● Repeat

...needs software that requires:
● domain knowledge
● knowledge of the math. description of the problem
● knowledge of algorithm design
● knowledge of software design and management
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Software issues in HPC

Ultimately, HPC is about applications, not just algorithms 
and their analysis.

Thus, we need to consider the issue of software that 
implements these applications:

● How complex is the software?
● How do we write software? Are there tools?
● How do we verify the correctness of the software?
● How do we validate the correctness of the model?

● Testing
● Documentation
● Social issues
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Complexity of software

Many HPC applications are several orders of magnitude 
larger than everything you have probably ever seen!

For example, a crude measure of complexity is the number 
of lines of code in a package:

● Deal.II has 550k
● PETSc has 500k
● Trilinos has 3.1M

At this scale, software development does not work the 
same as for small projects:

● No single person has a global overview
● There are many years of work in such packages
● No person can remember even the code they wrote
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Complexity of software

The only way to deal with the complexity of such software 
is to:

● Modularize: Different people are responsible for 
different parts of the project.

● Define interfaces: Only a small fraction of functions in a 
module is available to other modules

● Document: For users, for developers, for authors, and 
at different levels

● Test, test, test
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How do we write software

Successful software must follow the prime directive of 
software:

● Developer time is the single most scarce resource!

As a consequence (part 1):
● Do not reinvent the wheel: use what others have 

already implemented (even if it's slower)
● Use the best tools (IDEs, graphical debuggers, graphical 

profilers, version control systems…)
● Do not make yourself the bottleneck (e.g. by not writing 

documentation)

● Delegate. You can't do it all.
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How do we write software

Successful software must follow the prime directive of 
software:

● Developer time is the single most scarce resource!

As a consequence (part 2):
● Re-use code, don't duplicate
● Use strategies to avoid introducing bugs

● Test, test, test: 
- The earlier a bug is detected the easier it is to find
- Even good programmers spend more time debugging
  code than writing it in the first place
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Verification & validation (V&V): Verification

Verification refers to the process of ensuring that the 
software solves the problem it is supposed to solve: 

“The program solves the problem correctly”

A common strategy to achieve this is to...
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Verification refers to the process of ensuring that the 
software solves the problem it is supposed to solve: 

“The program solves the problem correctly”

A common strategy to achieve this is to test test test:
● Unit tests verify that a function/class does what it is 

supposed to do (assuming that correct result is known)
● Integration tests verify a whole algorithm (e.g. using 

what is known as the Method of Manufactured 
Solutions)

● Write regression tests that verify that the output of a 
program does not change over time

Software that is not tested does not
produce the correct results!

(Note that I say “does not”, and not “may not”!)

Verification & validation (V&V): Verification

http://www.dealii.org/


http://www.dealii.org/   Wolfgang Bangerth

 

Validation refers to the process of ensuring that the 
software solves a formulation that accurately represents 
the application:

“The program solves the correct problem”

The details of this go beyond this class.

Verification & validation (V&V): Verification
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Testing

Let me repeat the fundamental truth about software with 
more than a few 100 lines of code:

Software that is not tested does not
produce the correct results!

No software that does not run lots of automatic tests can 
be good/usable.

As just one example:
● Deal.II runs ~2300 tests after every single change
● This takes ~10 CPU hours every time
● The test suite has another 250,000 lines of code.
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Documentation

Documentation serves different purposes:
● It spells out to the developer what the implementation 

of a function/class is supposed to do (it's a contract)
● It tells a user what a function does
● It must come at different levels (e.g. functions, classes, 

modules, tutorial programs)

Also:
● Even in small projects, it reminds the author what she 

had in mind with a function after some time
● It avoids that everyone has to ask the developer for 

information (bottleneck!)
● Document the history of a code by using a version 

control system
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Social issues

Most HPC software is a collaborative effort. Some of the 
most difficult aspects in HPC are of social nature:

● Can I modify this code?
● X just modified the code but didn't update the 

documentation and didn't write a test!
● Y1 has written a great piece of code but it doesn't 

conform to our coding style and he's unwilling to adjust 
it.

● Y2 seems clever but still has to learn. How do I interest 
her to collaborate without accepting subpar code?

● Z agreed to fix this bug 3 weeks ago but nothing has 
happened.

● M never replies to emails with questions about his code.
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