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Top matter

About myself:

● Associate professor at Texas A&M University, one of the 
global research partners of KAUST

● I'm what they call a “Computational Scientist”

● Will be here till November 2, in Building 1, room 4409

● Will teach this and the next two weeks

● Will be glad to discuss with you any semester project 
you may want to do with our software (deal.II)

Will post class material at

http://www.math.tamu.edu/~bangerth/teaching.html
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The four pillars of HPC

HPC has four pillars:

● Computer architecture
Processor characteristics, memory access, networks

● Algorithms
Scaling with input size, concurrency properties

● Software
Software design and best practices, testing, documentation
Managing complexity
Scalability of software, robustness, correctness, validation, verification

● Applications
All fields of the sciences (physics, chemistry, biology) and engineering
(Therefore “Computational Sciences and Engineering (CS&E)”)

Extremely wide variety, often very discipline specific

Difficult to have an overview

http://www.dealii.org/
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Applications in HPC

“Most” HPC applications can be grouped into the following 
categories:

● Computational chemistry
Uses ~60% of CPU cycles on typical university supercomputers
About understanding catalysts, structure, arrangement; materials
Often difficult to make scale

● Partial differential equations & friends
Uses ~25% of CPU cycles
Posterchild of HPC because it has many flashy applications

● Computational biology
Uses maybe 5-10% of CPU cycles; often embarrassingly parallel
Gene sequencing, proteomics

● N-body problems
Used in astronomy, dilute gases, similar methods used in scattering

● The “rest”
Quantum field theory, data mining, financial mathematics, ...
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Looking forward

Plan for the next 3 weeks:
● Examples of PDEs in HPC
● A brief overview of the typical workflow in HPC for PDEs
● A very brief introduction to the finite element method
● Identifying mathematical concepts in the FEM that we 

need to represent in software

● Installing an open source FEM package, deal.II
● Going through and playing with some simple examples
● A more interesting example: the driven cavity
● Discussion of a homework project

● Beyond solving PDEs: optimization, inverse problems
● The role of software in HPC

http://www.dealii.org/
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Partial differential equations (PDEs) in HPC

Many well known applications in HPC are described 
by PDEs:

● Aerodynamics (cars, planes, windmills, ...)
● Weather and climate
● Statics and dynamics
● Earthquake modeling and seismic imaging
● Modeling of nuclear fission and fusion
● Biomedical imaging
● Combustion, explosions
● ...

Characteristics:
● Can be grouped into a number of model categories
● Can often be made to scale to 1000s or more processors
● Many excellent and efficient algorithms known
● Often complex software: 100,000s of line of code
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Partial differential equations (PDEs) in HPC

Examples from a wide variety of fields in my own work:
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Workflow for HPC in PDEs

Step 1: Identify geometry and details of the model

May involve tens of thousands of pieces, very labor 
intensive, interface to designers and to manufacturing
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Workflow for HPC in PDEs

Step 2: Mesh generation and maybe partitioning 
(preprocessing)

May involve 10s of millions or more of cells; requires lots of 
memory; very difficult to parallelize

http://www.dealii.org/
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Workflow for HPC in PDEs

Step 3: Solve model on this mesh using finite elements, 
finite volumes, finite differences, …

Involves some of the biggest computations ever done, 
10,000s of processors, millions of CPU hours, wide variety 
of algorithms

http://www.dealii.org/
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Workflow for HPC in PDEs

Step 4: Visualization to learn from the numerical results

Can be done in parallel, difficulty is amounts of data
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Step 4: Visualization to learn from the numerical results
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Workflow for HPC in PDEs

Step 5: Repeat

● To improve on the design

● To investigate different conditions (speed, altitude, 
angle of attack, …)

● To vary physical parameters that may not be known 
exactly

● To vary parameters of the numerical model (e.g. mesh 
size)

● To improve match with experiments

http://www.dealii.org/
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Workflow for HPC in PDEs

Each of these steps...
● Identify geometry and details of the model
● Preprocess: Mesh generation
● Solve problem with FEM/FVM/FDM
● Postprocess: Visualize
● Repeat

...needs software that requires:
● domain knowledge
● knowledge of the math. description of the problem
● knowledge of algorithm design
● knowledge of software design and management

We will come back to some of these issues later.

http://www.dealii.org/
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A prototypical example: FEM simulations

Next steps:

● Derive the finite element method (on the whiteboard)

● Identify things in the math that we need to represent in 
FEM codes

● Identify where in these concepts HPC is involved

● Download and install the software from

            http://www.dealii.org/

onto your Mac or linux laptops, university workstation or 
supercomputer account

● Go through some of the tutorial programs

http://www.dealii.org/
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Components of a finite element program

In our derivation of the finite element method we 
have identified the following components that we 
need to represent:

● FE shape functions defined on a reference cell

● The mesh

● The DoFHandler enumeration of degrees of freedom

● The mapping from reference cell to each mesh cell

● Quadrature rules to approximate integrals

● Data structures to store linear systems

● Solvers for linear systems

● Postprocessing algorithms

http://www.dealii.org/
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Components of a finite element program

Memory requirements:                (Blue: O(1). Red: O(N))
● FE shape functions
● Mesh
● DoFHandler
● Mapping
● Quadrature rules
● Linear systems
● Solvers for linear systems
● Postprocessing algorithms

Note: Because of their memory requirements, no 
processor in a parallel program can store every piece of 
the red components (i.e., they must be distributed). On the 
other hand, blue components can be replicated.
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Software issues in HPC

Ultimately, HPC is about applications, not just algorithms 
and their analysis.

Thus, we need to consider the issue of software that 
implements these applications:

● How complex is the software?
● How do we write software? Are there tools?
● How do we verify the correctness of the software?
● How do we validate the correctness of the model?

● Testing
● Documentation
● Social issues

http://www.dealii.org/
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Complexity of software

Many HPC applications are several orders of magnitude 
larger than everything you have probably ever seen!

For example, a crude measure of complexity is the number 
of lines of code in a package:

● Deal.II has 550k
● PETSc has 500k
● Trilinos has 3.1M

At this scale, software development does not work the 
same as for small projects:

● No single person has a global overview
● There are many years of work in such packages
● No person can remember even the code they wrote

http://www.dealii.org/
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Complexity of software

The only way to deal with the complexity of such software 
is to:

● Modularize: Different people are responsible for different 
parts of the project.

● Define interfaces: Only a small fraction of functions in a 
module is available to other modules

● Document: For users, for developers, for authors, and at 
different levels

● Test, test, test

http://www.dealii.org/
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How do we write software

Successful software must follow the prime directive of 
software:

● Developer time is the single most scarce resource!

As a consequence (part 1):
● Do not reinvent the wheel: use what others have 

already implemented (even if it's slower)
● Use the best tools (IDEs, graphical debuggers, graphical 

profilers, version control systems…)
● Do not make yourself the bottleneck (e.g. by not writing 

documentation)

● Delegate. You can't do it all.

http://www.dealii.org/
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How do we write software

Successful software must follow the prime directive of 
software:

● Developer time is the single most scarce resource!

As a consequence (part 2):
● Re-use code, don't duplicate
● Use strategies to avoid introducing bugs

● Test, test, test: 
- The earlier a bug is detected the easier it is to find
- Even good programmers spend more time debugging
  code than writing it in the first place

http://www.dealii.org/
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Verification & validation (V&V): Verification

Verification refers to the process of ensuring that the 
software solves the problem it is supposed to solve: 

“The program solves the problem correctly”

A common strategy to achieve this is to...

http://www.dealii.org/
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Verification & validation (V&V): Verification

Verification refers to the process of ensuring that the 
software solves the problem it is supposed to solve: 

“The program solves the problem correctly”

A common strategy to achieve this is to test test test:
● Unit tests verify that a function/class does what it is 

supposed to do (assuming that correct result is known)
● Integration tests verify a whole algorithm (e.g. using 

what is known as the Method of Manufactured Solutions)
● Write regression tests that verify that the output of a 

program does not change over time

Software that is not tested does not
produce the correct results!

(Note that I say “does not”, and not “may not”!)
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Verification & validation (V&V): Validation

Validation refers to the process of ensuring that the 
software solves a formulation that accurately represents 
the application:

“The program solves the correct problem”

The details of this go beyond this class.
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Testing

Let me repeat the fundamental truth about software with 
more than a few 100 lines of code:

Software that is not tested does not
produce the correct results!

No software that does not run lots of automatic tests can 
be good/usable.

As just one example:
● Deal.II runs ~2300 tests after every single change
● This takes ~10 CPU hours every time
● The test suite has another 250,000 lines of code.

http://www.dealii.org/


http://www.dealii.org/   Wolfgang Bangerth

 

Documentation

Documentation serves different purposes:
● It spells out to the developer what the implementation 

of a function/class is supposed to do (it's a contract)
● It tells a user what a function does
● It must come at different levels (e.g. functions, classes, 

modules, tutorial programs)

Also:
● Even in small projects, it reminds the author what she 

had in mind with a function after some time
● It avoids that everyone has to ask the developer for 

information (bottleneck!)
● Document the history of a code by using a version 

control system

http://www.dealii.org/
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Social issues

Most HPC software is a collaborative effort. Some of the 
most difficult aspects in HPC are of social nature:

● Can I modify this code?
● X just modified the code but didn't update the 

documentation and didn't write a test!
● Y1 has written a great piece of code but it doesn't 

conform to our coding style and he's unwilling to adjust 
it.

● Y2 seems clever but still has to learn. How do I interest 
her to collaborate without accepting subpar code?

● Z agreed to fix this bug 3 weeks ago but nothing has 
happened.

● M never replies to emails with questions about his code.

http://www.dealii.org/
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