
http://www.dealii.org/ Wolfgang Bangerth

Applied Mathematics &
Computational Science 312:

High Performance Computing II

Wolfgang Bangerth, Texas A&M University

David Keyes, KAUST

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Top matter

About myself:

● Associate professor at Texas A&M University, one of the
global research partners of KAUST

● I'm what they call a “Computational Scientist”

● Will be here till November 2, in Building 1, room 4409

● Will teach this and the next two weeks

● Will be glad to discuss with you any semester project
you may want to do with our software (deal.II)

Will post class material at

http://www.math.tamu.edu/~bangerth/teaching.html

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

The four pillars of HPC

HPC has four pillars:

● Computer architecture
Processor characteristics, memory access, networks

● Algorithms
Scaling with input size, concurrency properties

● Software
Software design and best practices, testing, documentation
Managing complexity
Scalability of software, robustness, correctness, validation, verification

● Applications
All fields of the sciences (physics, chemistry, biology) and engineering
(Therefore “Computational Sciences and Engineering (CS&E)”)

Extremely wide variety, often very discipline specific

Difficult to have an overview

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

The four pillars of HPC

HPC has four pillars:

● Computer architecture
Processor characteristics, memory access, networks

● Algorithms
Scaling with input size, concurrency properties

● Software
Software design and best practices, testing, documentation
Managing complexity
Scalability of software, robustness, correctness, validation, verification

● Applications
All fields of the sciences (physics, chemistry, biology) and engineering
(Therefore “Computational Sciences and Engineering (CS&E)”)

Extremely wide variety, often very discipline specific

Difficult to have an overview

My field and
the focus of

the next 3
weeks

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Applications in HPC

“Most” HPC applications can be grouped into the following
categories:

● Computational chemistry
Uses ~60% of CPU cycles on typical university supercomputers
About understanding catalysts, structure, arrangement; materials
Often difficult to make scale

● Partial differential equations & friends
Uses ~25% of CPU cycles
Posterchild of HPC because it has many flashy applications

● Computational biology
Uses maybe 5-10% of CPU cycles; often embarrassingly parallel
Gene sequencing, proteomics

● N-body problems
Used in astronomy, dilute gases, similar methods used in scattering

● The “rest”
Quantum field theory, data mining, financial mathematics, ...

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Applications in HPC

“Most” HPC applications can be grouped into the following
categories:

● Computational chemistry
Uses ~60% of CPU cycles on typical university supercomputers
About understanding catalysts, structure, arrangement; materials
Often difficult to make scale

● Partial differential equations & friends
Uses ~25% of CPU cycles
Posterchild of HPC because it has many flashy applications

● Computational biology
Uses maybe 5-10% of CPU cycles; often embarrassingly parallel
Gene sequencing, proteomics

● N-body problems
Used in astronomy, dilute gases, similar methods used in scattering

● The “rest”
Quantum field theory, ...

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Looking forward

Plan for the next 3 weeks:
● Examples of PDEs in HPC
● A brief overview of the typical workflow in HPC for PDEs
● A very brief introduction to the finite element method
● Identifying mathematical concepts in the FEM that we

need to represent in software

● Installing an open source FEM package, deal.II
● Going through and playing with some simple examples
● A more interesting example: the driven cavity
● Discussion of a homework project

● Beyond solving PDEs: optimization, inverse problems
● The role of software in HPC

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Partial differential equations (PDEs) in HPC

Many well known applications in HPC are described
by PDEs:

● Aerodynamics (cars, planes, windmills, ...)
● Weather and climate
● Statics and dynamics
● Earthquake modeling and seismic imaging
● Modeling of nuclear fission and fusion
● Biomedical imaging
● Combustion, explosions
● ...

Characteristics:
● Can be grouped into a number of model categories
● Can often be made to scale to 1000s or more processors
● Many excellent and efficient algorithms known
● Often complex software: 100,000s of line of code

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Partial differential equations (PDEs) in HPC

Examples from a wide variety of fields in my own work:

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Workflow for HPC in PDEs

Step 1: Identify geometry and details of the model

May involve tens of thousands of pieces, very labor
intensive, interface to designers and to manufacturing

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Workflow for HPC in PDEs

Step 2: Mesh generation and maybe partitioning
(preprocessing)

May involve 10s of millions or more of cells; requires lots of
memory; very difficult to parallelize

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Workflow for HPC in PDEs

Step 2: Mesh generation and maybe partitioning
(preprocessing)

May involve 10s of millions or more of cells; requires lots of
memory; very difficult to parallelize

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Workflow for HPC in PDEs

Step 3: Solve model on this mesh using finite elements,
finite volumes, finite differences, …

Involves some of the biggest computations ever done,
10,000s of processors, millions of CPU hours, wide variety
of algorithms

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Workflow for HPC in PDEs

Step 4: Visualization to learn from the numerical results

Can be done in parallel, difficulty is amounts of data

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Workflow for HPC in PDEs

Step 4: Visualization to learn from the numerical results

Can be done in parallel, difficulty is often amount of data

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Workflow for HPC in PDEs

Step 5: Repeat

● To improve on the design

● To investigate different conditions (speed, altitude,
angle of attack, …)

● To vary physical parameters that may not be known
exactly

● To vary parameters of the numerical model (e.g. mesh
size)

● To improve match with experiments

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Workflow for HPC in PDEs

Each of these steps...
● Identify geometry and details of the model
● Preprocess: Mesh generation
● Solve problem with FEM/FVM/FDM
● Postprocess: Visualize
● Repeat

...needs software that requires:
● domain knowledge
● knowledge of the math. description of the problem
● knowledge of algorithm design
● knowledge of software design and management

We will come back to some of these issues later.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

A prototypical example: FEM simulations

Next steps:

● Derive the finite element method (on the whiteboard)

● Identify things in the math that we need to represent in
FEM codes

● Identify where in these concepts HPC is involved

● Download and install the software from

 http://www.dealii.org/

onto your Mac or linux laptops, university workstation or
supercomputer account

● Go through some of the tutorial programs

http://www.dealii.org/
http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Components of a finite element program

In our derivation of the finite element method we
have identified the following components that we
need to represent:

● FE shape functions defined on a reference cell

● The mesh

● The DoFHandler enumeration of degrees of freedom

● The mapping from reference cell to each mesh cell

● Quadrature rules to approximate integrals

● Data structures to store linear systems

● Solvers for linear systems

● Postprocessing algorithms

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Components of a finite element program

Memory requirements: (Blue: O(1). Red: O(N))
● FE shape functions
● Mesh
● DoFHandler
● Mapping
● Quadrature rules
● Linear systems
● Solvers for linear systems
● Postprocessing algorithms

Note: Because of their memory requirements, no
processor in a parallel program can store every piece of
the red components (i.e., they must be distributed). On the
other hand, blue components can be replicated.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Software issues in HPC

Ultimately, HPC is about applications, not just algorithms
and their analysis.

Thus, we need to consider the issue of software that
implements these applications:

● How complex is the software?
● How do we write software? Are there tools?
● How do we verify the correctness of the software?
● How do we validate the correctness of the model?

● Testing
● Documentation
● Social issues

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Complexity of software

Many HPC applications are several orders of magnitude
larger than everything you have probably ever seen!

For example, a crude measure of complexity is the number
of lines of code in a package:

● Deal.II has 550k
● PETSc has 500k
● Trilinos has 3.1M

At this scale, software development does not work the
same as for small projects:

● No single person has a global overview
● There are many years of work in such packages
● No person can remember even the code they wrote

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Complexity of software

The only way to deal with the complexity of such software
is to:

● Modularize: Different people are responsible for different
parts of the project.

● Define interfaces: Only a small fraction of functions in a
module is available to other modules

● Document: For users, for developers, for authors, and at
different levels

● Test, test, test

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

How do we write software

Successful software must follow the prime directive of
software:

● Developer time is the single most scarce resource!

As a consequence (part 1):
● Do not reinvent the wheel: use what others have

already implemented (even if it's slower)
● Use the best tools (IDEs, graphical debuggers, graphical

profilers, version control systems…)
● Do not make yourself the bottleneck (e.g. by not writing

documentation)

● Delegate. You can't do it all.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

How do we write software

Successful software must follow the prime directive of
software:

● Developer time is the single most scarce resource!

As a consequence (part 2):
● Re-use code, don't duplicate
● Use strategies to avoid introducing bugs

● Test, test, test:
- The earlier a bug is detected the easier it is to find
- Even good programmers spend more time debugging
 code than writing it in the first place

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Verification & validation (V&V): Verification

Verification refers to the process of ensuring that the
software solves the problem it is supposed to solve:

“The program solves the problem correctly”

A common strategy to achieve this is to...

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Verification & validation (V&V): Verification

Verification refers to the process of ensuring that the
software solves the problem it is supposed to solve:

“The program solves the problem correctly”

A common strategy to achieve this is to test test test:
● Unit tests verify that a function/class does what it is

supposed to do (assuming that correct result is known)
● Integration tests verify a whole algorithm (e.g. using

what is known as the Method of Manufactured Solutions)
● Write regression tests that verify that the output of a

program does not change over time

Software that is not tested does not
produce the correct results!

(Note that I say “does not”, and not “may not”!)

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Verification & validation (V&V): Validation

Validation refers to the process of ensuring that the
software solves a formulation that accurately represents
the application:

“The program solves the correct problem”

The details of this go beyond this class.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Testing

Let me repeat the fundamental truth about software with
more than a few 100 lines of code:

Software that is not tested does not
produce the correct results!

No software that does not run lots of automatic tests can
be good/usable.

As just one example:
● Deal.II runs ~2300 tests after every single change
● This takes ~10 CPU hours every time
● The test suite has another 250,000 lines of code.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Documentation

Documentation serves different purposes:
● It spells out to the developer what the implementation

of a function/class is supposed to do (it's a contract)
● It tells a user what a function does
● It must come at different levels (e.g. functions, classes,

modules, tutorial programs)

Also:
● Even in small projects, it reminds the author what she

had in mind with a function after some time
● It avoids that everyone has to ask the developer for

information (bottleneck!)
● Document the history of a code by using a version

control system

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Social issues

Most HPC software is a collaborative effort. Some of the
most difficult aspects in HPC are of social nature:

● Can I modify this code?
● X just modified the code but didn't update the

documentation and didn't write a test!
● Y1 has written a great piece of code but it doesn't

conform to our coding style and he's unwilling to adjust
it.

● Y2 seems clever but still has to learn. How do I interest
her to collaborate without accepting subpar code?

● Z agreed to fix this bug 3 weeks ago but nothing has
happened.

● M never replies to emails with questions about his code.

http://www.dealii.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

