MATH 652: Optimization II



Part 14

Linear programming 1

.« e . T
minimize ¢ x
Ax > b



Linear Programming

Definition: A linear program is an optimization problem in which
* the objective function 1s linear (affine), 1.e. has the form

f(x)=c x+d, ¢,x€R”

(Note, however, that the existence of the constant d does not affect
where the optimum lies.)

e all equality and inequality constraints are linear (affine), 1.e. they
either have the form

a. x<b..

l

a; x=b,, a.€R’, b,eR
or
a; x=b;, a.€R’, b,eR
Note that an equality constraint is equivalent to two inequality
constraints:
a x>b.,
T



Linear Programming

Definition: A linear program is an optimization problem that can be
written equivalently as

min C X

Ax>b

x€R"



Linear Programming: Example 1

Production planning: A company wants to produce products i=1...N
which it can sell for a price of ¢ . Product i needs a, units of resource

Jj=1...M. We have bj units of resource j available. How much of each

product should it produce?

Mathematical formulation:

o Let x. be the number of product i that is produced

p

e Revenue: Z c.x. = c'x
=1

 We need Z units of resource j
i=1 ﬂ 1

e The problem we need to solve 1s then

T . T

C X or H’llﬂxean —C X

a;x<b, j=1..M | equivalently —Ax=-b

MaX, cg-




Linear Programming: Example 2

Future capacity planning: A power company foresees a demand of d
gigawatt-hours in year r=2010..2050. It has existing capacity e and can
choose to extend capacity using either coal (at a price of ¢ per
gigawatt-hour built) or wind power plants (at a cost of w built). Coal

power plants last for 25 years, wind plants for 30. The company wants
to build plants so that foreseen demand is met and at minimal cost.

Mathematical formulation:
e Let x be the capacity of coal power built in year ¢, and y be the

capacity of wind power
e Total cost 1s then

2050
Zt=2010 CtXt + Wt.yt

e The available capacity in year 7 is
t

t
et-l_z s=max| 2010, —25} XS—I_ Zs=max (2010, t—30] Ys



Linear Programming: Example 2

Mathematical formulation:

. 2050
mlnxt’)/t Zt=2()10 CtXt-I_Wtyt

t t
ZFHI&X 2010, t—25} Xt Zs=max{2010,t—30} Js Zdt—et ’ t=2010..2050
X20, t=2010..2050
Y20, t=2010..2050

We can reformulate this in the usual form by denoting

. T
X_(xzozo’ xzou’ Y x2050’ Yy 2010 y 2010 =7 Y 2050)

_ T
C_(szo’ 62011’ Y 62050’ Wzozo’ Wzou’ Y W2050)

b=(d. -e e, .., e )

2010 2010 2011 2011 2050 2050
j C'X
mlanIRBZ
AX>b

X=0




Linear Programming: Example 3

Scheduling of resources to tasks: A hospital needs to schedule nurses
to night shifts. Nurses work 5 days in a row on a 7-day schedule. On
the ith day of the week, past history shows that n. nurses are needed.

How many nurses are needed in total, and on what schedules should
they be?

Mathematical formulation:
e Let x be the number of nurses that start their 5-day run on day i

e The total number of nurses needed 1s then

\
Zi:\ Xl

e On day 1, the number of nurses available 1s

X, +X,TX,TX, TX,

e On day 2, the number of nurses available 1s
X, X+ XyTX, 1+ Xy



Linear Programming: Example 3

Mathematical formulation:

7
IIlll‘1><€IR7 Zi=1 Xi
I
Zk=i_4 Xi mod 7 = di, 1=1...7
X, 0, i=1..7

1

IV

Note: More realistic formulations would also include preferences by
employees, conflicts, tied schedules (e.g. advisor/trainee),
contingencies/on-call duties, etc.
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Linear Programming: Example 3

Mathematical formulation:

7
IIlll‘1><€IR7 Zi=1 Xi
I
Zk=i_4 Xi mod 7 = di, 1=1...7
X, 0, i=1..7

1

IV

However: In reality, we also need to consider that the number of
nurses, x, must be an integer.

The problem is therefore not a common linear programming (LP)
problem, but an integer linear programming (ILP) problem.

ILPs are much more difficult problems to solve!



Linear Programming: Example 4

Network flow: Food needs to get from a set of locations (“sources”) of
capacity s, to a different set of locations (“sinks”) of demand d.
Sources have d=0, sinks s=0. Transportation happens on a network
between nodes (i,j) of bandwidth 4 and transporting one unit of food

ij
on this link costs ¢ .

Y
How should food be transported most cost effective so that demand 1s
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Linear Programming: Example 4

Mathematical formulation:
e Let X, be the amount of food that is transported on edge (i,j) of the

network, 1.e. from point i to point j

* We need to satisfy bandwidth constraints for each link:

X; < by

(Note: If a link does not exist, then b,-jZO‘ Links are directed!)

* Sources can not deliver more than they have:

Z-Xij < s, atsources
1

* Sinks need to get their demand satistied:

Zi X; = d, at sinks
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Linear Programming: Example 4

Mathematical formulation:

min, e Z,-,J- Cii Xjj
X..

i = by
X; > (),
2% S8,
Zi Xi = d;.

Note: Such problems appear in a wide variety of transportation
problems. Examples are the shipping of books from amazon.com's
distribution centers to customers, supplying goods from HEB's
distribution centers to stores, etc.

A more complex version of the network flow problem would include a
variety of products, rather than just one, or that origin and destination
of each product matter (e.g. letters).



Linear Programming: Example §

Network capacity: Data packets need to get from node A to node B

along a network with given bandwidth bij on each edge.

What 1s the maximal data rate that can be transported on this network
from A to B?

E
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15

Linear Programming: Example §

Mathematical formulation:

e Let X, be the data rate transported on edge (i,j) of the network, 1.e.

from point i to point j

* We need to satisfy bandwidth constraints for each link:

X; < by

(Note: If a link does not exist, then b,-jZO‘ Links are directed!)

e At location i=A, we have for the net inbound flux:

e At location i=B, we have:

kaki_zj Xj = S
» At all other nodes, data 1s just transported through:

kaki_zjxij =0



Linear Programming: Example §

Mathematical formulation:

mmxe|R” ' seR

vV IA

b;»
O

s
X;
X..
Z X, — Z X; = 6,40 ;)

Note: Extensions might consider that there can be multiple sources but
only one destination (e.g. Google data centers, P2P/Napster servers), or
that multiple products need to be provided.

Network capacity problems are ubiquitous in transportation planning
such as highway networks, airplane scheduling, etc.
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Linear Programming: Example 6

Convex optimization of a nonlinear function: Math 651 dealt almost
exclusively with the question of finding the minimum of a function f{x)
that may be nonlinear. If it 1s at least convex, we may be able to

approximate it with piecewise linears.

\ /
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Linear Programming: Example 6

Mathematical formulation:
e The original problem was to find the solution of

l‘nianIR" f(X)
e An equivalent formulation of this is:

min

x€R",z€R Z
Z

> f(x)

« An approximation to this can be found if we choose points §l_ and

solve instead

min V4

z 2 f(E)+Vf(E) (x=¢), Vi

x€R",z€R

Note: The solution of this problem could serve as a good starting point
for the full nonlinear minimization. Constraints can easily be

incorporated if they are linear, or a linearized as well.



Linear Programming: Example 7

Data fitting: Find a linear relationship that best fits a set of data points.
This can be formulated in a variety of ways:

. 1

MMy per 7 i(yi_<ati+b))2
min, | Zi|yi—(atl.+b)|
min

r MdX; |yi_<ati+b>|

a,bel

The first one 1s a smooth, convex
problem for which the techniques
of Math 651 are well suited. The other two are non-smooth but convex
problems that can be reformulated as linear programming problems.

19



Linear Programming: Example 7

Mathematical formulation:
e The original problem was to find the solution of

N
min, | Zi=1|yi—(ati+b)|

e An equivalent but still non-smooth formulation of this 1s:
N

M, | g g Zi=15i
s;=|y—(at+b)|,  i=1.N

e But we can re-formulate this as a smooth problem as follows:

N
Inll‘la,bEIR,selR" Z,’:l Si
s.>(y.—(at+b)), i=1..N
512_<y1_<atl+b))5 i=1...N

Note: A similar techniques also works for the maximum-residual
problem.

20



Formulating linear programs

Theorem:
Any linear optimization problem that i1s given in the form

. T
min .. C X
A, x>b,
A.x=b,

A.x<b,

can be restated in the form

min g c X
Ax>b
where A, b,
A=| A | p=| O |
_A, b,

21 A, —b,
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Formulating linear programs

Theorem:
Any linear optimization problem that i1s given in the form

c' X

Ax>b

1s equivalent to a problem written 1n standard form of linear
programming:

min, g-

MmN, oo v R
Ax=b
x>0
where .
X C
A=A -A -1, x={,|, ¢=|-c
S 0

Note: Standard form is more convenient for algorithm development
and will therefore frequently be used.
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The geometry of feasible sets

Definition: A set S i1s called convex if

x,y€S implies Ax+(1-A)yeS V0<aA<l.

X
Y
S
A convex set S. A nonconvex set S.
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The geometry of feasible sets

Lemma: The set of points that satisfy a single constraint,
(x€R": a. x>b)

1s a half-space and is convex.

Lemma: The intersection of finitely many convex sets i1s convex.

Theorem: The set of points described by the constraints,

{xeR": Ax>b]
1S convex.



The geometry of feasible sets

Example: The set of points described by four constraints.

Xo

(x€R’: a x>b,,i=1]

25



The geometry of feasible sets

Example: The set of points described by four constraints.

(x€R’: a x>b,,i=12]

26



27

The geometry of feasible sets

Example: The set of points described by four constraints.

X
42

y

(x€R’: a x>b,,i=1..3

Note: The matrix

_ 32
A=|q|eR

does now no longer
have full row rank!
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The geometry of feasible sets

Example: The set of points described by four constraints.

X
42

Note: The feasible
set 1s a compact

subset of R>.

(x€R*: a x>b,,i=1. 4]



29

The geometry of feasible sets — Pathologies 1

Example: The set of points described by four constraints.

¥

(x€R*: a x>b,,i=1. 4]

Note: The feasible
set 1s empty. The
constraints are
said to be
mutually
incompatible!
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The geometry of feasible sets — Pathologies 2

Example: The set of points described by four constraints.

(x€R*: a x>b,,i=1. 4]

Note: The feasible
set 1s unbounded
and consequently
not compact.
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The geometry of feasible sets — Pathologies 3

Example: The set of points described by five constraints.

(x€R’: a x>b,,i=1..5

Note: Constraints 4
and 5 are linearly
dependent but not

mutually exclusive.

/ Nothing bad happens.
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The geometry of feasible sets — Pathologies 4

Example: The set of points described by five constraints.

(x€R’: a x>b,,i=1..5

Note: Constraint 5 1s not
parallel to any of the
other constraints

but will never be
active. Nothing

bad happens.



The geometry of feasible sets — 3 and more dimensions

Feasible sets with three or more variables must still be convex. They
are, 1n particular, convex polyhedra:

A convex polyhedron A nonconvex polyhedron
(an 1cosidodecahedron) (a stellation)

33



The geometry of the objective function

Example: The function f{x) = x +x, = c'x.




The geometry of linear problems

Example: The function f{x) = x +x, = c'x.

This 1s the

location

within the feasible
set with the smallest
(x), 1.e. the point

of solution.

35



The geometry of linear problems

Example: The function f{x) = x +x, = c'x.

e,
“,
s,
s,
A o
%,
‘e,
‘s, —_
,
e,
s,
‘e
—
X)=——

The geometry of such problem suggests an algorithm: Start at one of
the vertices and keep trying to find an adjacent vertex with smaller f{x).
36 This is, in essence, Dantzig's simplex algorithm.
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The geometry of linear problems

Example: The function f{x) = x +x, = c'x.

This problem 1s unbounded,
1.e. there 1s a direction in
which the feasible set is

unbounded and f(x) 1s
unbounded from below.




Possible solutions of linear programs

If (1) the feasible set 1s bounded, and (11) the feasible set is not empty:

A single vertex 1s the unique All points along a whole edge are
solution. solutions. In particular, the vertices
38 of the edge are solutions.
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The geometry of linear programs in standard form

Recall that any linear optimization problem that is given in the form

. T
min, . C X
Ax>b
is equivalent to a problem written in standard form:
. ~T ~
min, ... C X
x=b
x>0
where
_I_
X C
A=A -A 1|, x=[,|, ¢=|-c
S 0

mX (2n+m

Note: If AcR™™ then A€R ). While the original matrix may not
have fewer rows than columns, the second definitely does.



40

The geometry of linear programs in standard form

Problems written in standard form:

)
<t

mmxelR‘“*’"

2

=b

PO
vV <1

definitely have a matrix with fewer rows (m) than columns (2n+m).

Corollary: The feasible set is the intersection of a hyperplane (with
dimension equal to at least (2n+m)-m=2n) with the first quadrant/

octant/etc.

In particular, the feasible set 1s also a polygon, just like before, except
that this polygon now lies in a lower-dimensional subspace defined by
the constraint.



The geometry of linear programs in standard form

Example: Consider min . X

x>1

The standard form of this problem is:

. + -
Inlnx=[x+,x',s}€IR3 X —X
X —x—s=1
X >0
+ - R + - + - . ~
x —x —s=1 inthearea x >0,x >0 X —Xx —s=1 inthe area x>0

41 i.e. the feasible set
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The geometry of linear programs in standard form

Example: Consider min . X

x>1

The standard form of this problem is:

. + -
mlnx={x+,x',s}€IR3 X=X
+ -
X —x—s=1
X >()

Note: The solution to this problem 1s not unique — any set of variables
X =1+x, x>0, s=0

produces the optimal value 1 of the objective function. By
unsubstituting variables we get the unique solution of the original
problem:
+ -
x=x-x =1
The value of the objective function is of course the same.
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Possible solutions of linear programs

One of the following cases must hold:
e A vertex of the feasible region 1s the unique solution

e All points of an edge or face of the feasible region are solutions; in
particular, the vertices of the edge or face are solutions

e The feasible set is empty and there are no solutions

* The feasible set 1s unbounded and the objective function is
unbounded from below 1n one of the directions in which the
feasible set 1s unbounded; the problem then has no bounded
solution.

In other words:

If bounded solutions exists,
the set of solutions must include at least one vertex!
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Possible solutions of linear programs

Definition:
We call a point x* a local solution of

l‘ninxelR” f(X)
glx)=", hx)2:

if there exists a neighborhood U of x* so that

f(x*)<f(x) VxeUn|x:g(x)=", h(x)>"]

Definition:
We call a point x* a global solution of

min . f(x)
g(x)=", h(x)>:
if
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Possible solutions of linear programs

Definition:
We call a function f(x) convex if

fF(Ax+(1-A)y) < Af(x)+(1=-A)f(y) Vx,yeDcR",A€0,1]
We call it concave if

f(Ax+(1=A)y) = Af(x)+(1-A)f(y) Vx,yeDcR",A€[0,1]

Corollary:
Any linear (affine) function is both convex and concave.

Remark: In fact, affine functions are the only functions that are both
convex and concave.
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Possible solutions of linear programs

Theorem:
Any local solution of a linear program 1is also a global solution.

(Proof: Use convexity of the feasible set and of the objective function.)

Theorem:
The set of all global solutions of a linear program 1s convex (and
consequently also singly connected).

(Proof: Use convexity of the feasible set and linearity of the objective function.)

Theorem:
Among all solutions of a linear program is always at least one vertex of
the feasible set.

(Proof: Later, need to define precisely what a vertex 1s.)
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Polvhedra in a formal language

Definition:
We call the set of points {x€R": Ax>b| a polyhedron.
If n=2, we also call it a polygon.

Corollary:
The set of points (xeR": Ax=b,x>0] 1s also a polyhedron.
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Polyhedra in a formal language

Definition:
Let PcR" be apolyhedron. We call peP an extreme point if

there are no x, yEP,x#p,y#p sothat p=Ax+(1-A)y forany 0<A<1.

An extreme point. Two points that are not extreme.
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Polyhedra in a formal language

Definition:
Let PclR" be a polyhedron. We call peP avertex of P if there is a

vector ¢ so that ; :
cp<cx VX€EP,x#p.

An extreme point. Two points that are not extreme.
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Polvhedra in a formal language

Definition:
Let PcR" be a polyhedron defined by

P=(x€R":a; x>b, for i=1...m,, a x=b, for i=m,+1...m,]

The set of active or binding constraints at a arbitrary point peR" 18
defined as

I(p)={i€[1,m1]:afp=bi} U {ie[ml—l'l’mz]:a?p:bi} c [Lm,

Note: If peP then

I(p)=li€[L,m]:a; p=b] U [m,+1,m,]

because all equality constraints must be active.
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Polvhedra in a formal language

Tentative conclusion: At a vertex of a polyhedron in n space
dimension, n constraints are active, 1.e. #I(p)=n.



52

Polvhedra in a formal language

But careful:

X2

I(p,)={1,5]

I(p,)={1,2,5]

A vertex with n+/ active constraints. Not a vertex, but n
constraints are active.
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Polvhedra in a formal language

Definition:
Let PcR" be a polyhedron defined by

P=(x€R":a; x>b, for i=1...m,, a x=b, for i=m,+1...m,]
We call peR" a basic solution of P if:
e all equality constraints are satisfied at p

e the set
\a;:i€l(p)|
contains n vectors that are linearly independent.



Polvhedra in a formal language

Note:
The condition that
a;:i€I(p)]
contains n vectors that are linearly independent is equivalent to saying

that

« The vectors a_form a basis of R". This 1s why these points are

called “basic” (i.e. “basic” as in “basis’, not ‘“fundamental”).

 If we group the vectors and corresponding right hand sides into a

linear system
T

a; x=b,, i€l(p)

then the solution will be unique and will equal p. This 1s why these
54 points are called “solutions”.
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Polvhedra in a formal language

Definition:
Let PcR" be a polyhedron defined by

P=(x€R":a; x>b, for i=1...m,, a x=b, for i=m,+1...m,]
We call peR" adegenerate basic solution of P if:
e all equality constraints are satisfied at p

e the set
\a;:i€l(p)|
contains n vectors that are linearly independent

e this set has more than n elements, 1.e. more than »n constraints are
active at p.
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Polvhedra in a formal language

Definition:

A basic solution p 1s called a feasible basic solution 1f 1n addition to the
equality and active inequality constraints also the inactive inequality
constraints are satisfied.

Xz

@ The only five
feasible basic
s, solutions

e Some of the
non-feasible
basic solutions
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Polvhedra in a formal language

Theorem:
A feasible basic solution 1s a vertex 1s an extreme point.

In other words: Let p be a point in a non-empty polyhedron P. Then it
1s either none or all of the following:

e p 1s a feasible basic solution
* pis a vertex of P

* p 1s an extreme point of P
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Polvhedra in a formal language

Theorem:
A polyhedron can only have finitely many vertices.

Note: In fact, a polyhedron
P=(xeR":a x>b, fori=1..m', a x=b, fori=m'+1...m|
can have at most

m
n

m!
~(m—n)!n!

basic solutions. However, this can be a very large number!

Example: The unit cube in n dimensions has 2"=10""" vertices.
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Polvhedra in a formal language

Note: A polyhedron
P=(x€R":a; x>b, for i=1..m", a x=b, fori=m'+1...m|

can have at most

m!
(m—n)!n!

m
n

basic solutions. However, not all of them are feasible. In fact, at every
feasible basic solution, the m-m' equality constraints need to all be
active, so that there can be at most

I

n—(m—m')

m'! m'!

(n—m+m')!(m'=(n—(m-m")))! (n—(m-m"))!(m—n)!

feasible basic solutions (vertices).
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Possible solutions of linear programs

Theorem:
If the feasible set of a linear program 1s non-empty and has at least
one vertex, then exactly one of the following 1s true:

e The minimum of the objective function over the feasible set is
—o0_Or

e among all solutions of the linear program is always at least one
vertex of the feasible set.
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Part 15

Linear programming 2:
A naive solution algorithm

.« e . T
minimize ¢ x
Ax > b



A naive algorithm

Theorem: A polyhedron can only have finitely many vertices.

Corollary: One (simplistic) way to find a solution to a linear
program 1s the following procedure:

1.Convince ourselves that the linear program has a bounded
solution

2.Find all basic solutions

3.Among these, 1dentity all feasible basic solutions by testing
which of the basic solutions satisfy all constraints. These are the
vertices of the feasible set

4. Among these, find the vertex (feasible basic solution) or vertices
that have the lowest value of the objective function. These are the
solution(s) of the problem

62
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A naive algorithm

Practical implementation of step 2:
A basic solution of a problem with constraints

Ax>b, or equivalently a x>b,,i=1..m

1s a point x at which n linearly independent constraints are active. (In
addition to possibly more constraints that then need to be linearly
dependent on the previous ones.)

One way to enumerate all basic solutions is by enumerating all
subsets of n constraints among the total of m constraints:

e Take all possible selections I of n indices within the set [1,m]

e For each I see if the constraints are linearly independent. If so,
find the (unique) point x at which

a x=b, Vi€l

This 1s a basic solution.
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A naive algorithm

Practical implementation of step 2 — example:
If we have 3 variables x:{xl,xZ,x3 J and 8 constraints

Ax>b, orequivalently a x>b,i=1...8

then we need to

e try first the set I={1,2,3}

e see if the 3x3 matrix A = ag has full rank

» It so, then the equation A x =b 1s unique and x, 1s a basic

solution

e Continue with the sets I={1,2,4}, {1,2,5/, ..., {6,7,8} and do the
same steps



A naive algorithm

Practical implementation of step 3:
Now that we have a basic solution x, we need to determine which of
those are feasible.

By construction, we already know that

a x=b, Vi€l

but we also have to check the remaining m-n constraints:
e Go through all indices j¢]

» If for any of these indices g x<b,  then this basic solution is
infeasible, 1.e. it can not be a feasible basic solution and therefore
not be a vertex. We can discard this basic solution

e If the basic solution turns out to be feasible with regards to all

65 other constraints, then it must be a vertex
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A naive algorithm

Practical implementation of step 4:
Now that we have a feasible basic solution x, we need to determine
which one 1s the best with regard to the objective function.

To do this:

- For every set of n indices / compute x, as the basic solution
o If 1t turns out to be feasible, compute f(xl):chI

o It this value f(x ) 1s bigger than the previously smallest one seen,

then forget about this feasible basic solution and move on to the
next set of n indices

o It this value f{x ) 1s smaller than the previously smallest one seen,
then save f( xl) and X, for later comparison and move on to the

next set of n indices



A naive algorithm

Assessment of the algorithm:

e The algorithm works and finds the solution if there exists a
bounded solution

e The algorithm 1s unaffected by degeneracy

* The algorithm 1s slow because it needs to test every vertex of the
feasible region

 Since the number of vertices in general grows combinatorically
with the number of variables and constraints, the run time of the
algorithm grows exponentially as

m
n

(n3+(m—n)n)~(2.5y)” if m=yn

e Such algorithms are not suited for practical, large-scale problems

with thousands or millions of variables and constraints
67
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Part 16

Linear programming 3:
Dantzig's simplex algorithm

. . T
minimize ¢ X
AXx
X

v i
S~
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The idea

Instead of enumerating and testing all vertices, we should:
e Start with a feasible basic solution (vertex)

 Tests its neighbors and go to one with a lower objective function
value

 Since the objective function values are a decreasing sequence,
cycling 1s not possible; since there are only finitely many vertices,

the algorithm must terminate in a finite number of steps

e Since we only accept vertices with lower objective function values,
we hope that we need to visit far fewer than all vertices

This is the basic 1dea of Dantzig's simplex algorithm



Preliminary considerations 1

Theorem:
Let the feasible set of a linear program in standard form be described
by the equations

P={xeR": Ax=b,AeR™", m=<n, x>0/

where the matrix A does not have full row rank (i.e. its rows are
linearly dependent).
If P 1s not empty, then there exists a matrix with full row rank so that

Q={xeR": Ax=b,A€eR""",m'<m<n, x>0

and O=P.

Due to this equivalence, we will in the following
always assume that A has full row rank.
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Preliminary considerations 2

The feasible sets of linear programs in standard form are also
polyhedra and are described by the equations

P={xeR": Ax=b,AeR™", m<n, x>0/

Then at any feasible basic solution (vertex of P) the following holds
true:

e all m equality constraints are active

o at least n-m variables x are zero
l

e if a basic solution is non-degenerate, exactly n-m variables are zero

Standard form is so convenient because we don't just know
that n-m inequalities are active, but can associate
them with vector components!
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Preliminary considerations 3

Definition:
Let PcR" be a polyhedron. Let p, p,€R" be two basic solutions of P.
We call them adjacent if

\a;:i€I(p,)|
and
\a;:i€1(p,)|
contain a common set of n-1 vectors that are linearly independent.

X
42

Non-adjacent vertices

Adjacent vertices

)




73

Preliminary considerations 3

In particular, for standard form:

Since equality constraints always have to be active, every feasible basic
solutions of a polyhedron in standard form

P={xeR": Ax=b,AeR™", m<n, x>0/
must have m active equality constraints, and

- exactly n-m variables x that are zero (if the basic solution 1s not

degenerate)

« Oor more than n-m variables X that are zero (if the basic solution 1s

not degenerate).

In the non-degenerate case, two basic solutions are adjacent if they
differ in exactly one pair of variables x that are zero/nonzero at one

vertex and nonzero/zero at the other!
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Preliminary considerations 4

Definition:
Let x be a point 1n a polyhedron P. Then we call a vector d a feasible
direction if

40>0: x+0deP

Example:
—» feasible directions

— - Infeasible directions
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Preliminary considerations 4

In particular:
Let p be a non-degenerate vertex of a polyhedron P described 1in
standard form:

P={xeR": Ax=b,AeR™", m<n, x>0/

Let I(p) be the active set of constraints at p. Then any feasible direction
d needs to satisfy the following conditions:

Ad=0
d>0 Vi+mel(p)
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Preliminary considerations 4

Conversely:
Let [, #I=n be a set of indices. Assume the associated constraints are

linearly independent. Then 7 describes a vertex p of a polyhedron

mXn

P={x€R": Ax=b,AeR""" m<n, x>0]

If the vertex is not degenerate, then any direction that satisfies

Ad=0
d>0 Vit+mel(p)

1s feasible. If the vertex is degenerate, then we have to require that

Ad=0
d>0 Vi+mel(p)
d>0 Vi+mé&I(p),x=0

Note: These relations can be used to test whether a proposed direction
1s feasible or not.
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The simplex algorithm, non-degenerate case

The simplex algorithm works on standard form:
P=(xeR": Ax=b,AcR™" m<n, x>0]

At every step of the simplex algorithm, the current state 1s described by
the following pieces of information:

e A set of indices H, #H=m, called the basis. H describes the
variables that are not bound by the constraints and so 1s somewhat
complementary to the set of active indices 1.

o H defines a basis matrix B=AH that consists of the columns of A

listed in H. B 1s the “interesting” part of the matrix A .

e H defines a basic solution x of a polyhedron (which in the algorithm
will always be feasible) that satisfies

Bx,=b
X, = 0
Due to non-degeneracy, X, >0 for each vector element.
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The simplex algorithm, non-degenerate case

Why bases instead of active sets:

Let the polyhedron be described by

mXn

P={xeR": Ax=b,A€R <n, x>0]

Then at every (non-degenerate) basic solutlon we have an active set /
with exactly n elements. These are:

e The indices I...m corresponding to equality constraints

e A subset of size (n-m) of the indices m+1...m+n corresponding to
the positivity constraints

The linear system that describes the basic solution is therefore:
Ax=b
x;=0 1=m+1l.n

x therefore consists of two parts: components x, that are not necessarily
zero, and X, _ that must be zero. Therefore, in the first equation, only
columns hsted in H participate, 1.e. the basis matrix B.
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The simplex algorithm, non-degenerate case

The main idea of the simplex algorithm:

Let H, B be the current basis and basis matrix, and x be a non-
degenerate feasible basic solution defined by H.

o To move from x, to another vertex, we need to release one non-

basic variable j from its constraint xj=0 and make it positive.

e QOur search direction should therefore be
d =1
d=0 i¢H,i#]

e The basic components need to satisty

A(x+d)=b - Ad=0 - Bd;+A=0 - d,=—B'A

J
where Aj denotes the jth column of A.

e The vector d so defined 1s called the jth basic direction.
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The simplex algorithm, non-degenerate case

Theorem:

Let H, B be the current basis and basis matrix, and x be a non-
degenerate feasible basic solution defined by H.

Then for every j¢H the direction defined by

d=1
d=0 i¢H,i#]j
dH=_B_1Aj

1s feasible.

Note 1: If x 1s degenerate, then d 1s a feasible direction if and only if

(d,)>0 VieH,x=0
Note 2: Feasibility should not be a surprise — we still have (n-1)
constraints that are active. d 1s constructed to lie in this 1d subspace.
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The simplex algorithm, non-degenerate case

Theorem:

Let H,B be the current basis and basis matrix, and x be a feasible basic
solution defined by H.

Then for every j¢H the jth basic direction 1s a direction of descent of
the objective function if the reduced cost satisfies

~ _ . T np-l
¢;=c,—cyB A;<0
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The simplex algorithm, non-degenerate case

Theorem:

Let H,B be the current basis and basis matrix, and x be a feasible basic
solution defined by H. Then:

o If Ej=cj—C£IB_1AjZO V j¢H then x is optimal

* If x 1s optimal and non-degenerate, then ¢>0 V j¢H

Note: The first condition can be used to test whether a vertex x 1s
optimal — we only need to compute all reduced costs!
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The simplex algorithm, non-degenerate case

Line search:

Let H, B be the current basis and basis matrix, and x be a non-
degenerate feasible basic solution defined by H.

Let d be a feasible basic direction. Then:
» x+0d satisfies (n-1) constraints for sufficiently small step lengths 6.

e x+0d is feasible for

0 <0 = min, ey 4 g
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The simplex algorithm, non-degenerate case

Algorithm:

Let H,B be the current basis and basis matrix, and x be a non-
degenerate feasible basic solution defined by H. Then perform the
following steps:

Letj=1...n, jLIH
Compute d,=—B'A.

])
If E’.<O then
- compute 0 = minieH,di<O
minimum 1S attained
- set X0, xy—x,+0 dy
He—H\{l}U{j}

B, —A;
- start over

—~ _ T np-l
c=c,—cyB A,

i

and let [ be the index for which the

i

Try the next . If no j allows has negative reduced costs, then we have a
solution.




85

The simplex algorithm, non-degenerate case

Note:

If all components of d turn out to be positive, then we have a direction
in which every point is feasible and we can choose § = . This means
that the problem has no bounded solution at the point where we
compute the step length we have already determined that d 1s a
direction of descent.

Theorem:

Assume the basic matrix B=( Ay Ay .. Ay ) at the beginning of the
iteration has full rank. Then the new basic matrix

B=(AyAp,.. Aj... Ay |

also has full rank.
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The simplex algorithm, non-degenerate case

Theorem:

The algorithm just outlined terminates after finitely many steps with
one of the following results:

* It all reduced costs ¢, are non-negative, then the current vertex 1s
a solution of the minimization problem

* It at a vertex at least one of the reduced costs ¢, 1s negative but the
corresponding search direction satisfies d>0, then the linear
problem 1s unbounded from below and has no bounded solution.
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The simplex algorithm, non-degenerate case

Note: In our algorithm, we test

* Is one of the reduced costs ¢, negative

e If so, let j enter the basis (i.e. release its constraint and make it a
free variable)

Question:

What do we do if the reduced costs are negative for more than one
index?

We could choose any variable with a negative reduced cost, but maybe
some strategies will lead to algorithms that require fewer iterations than
others.
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The simplex algorithm, non-degenerate case

Question: What do we do if the reduced costs are negative for more
than one index?

Answer: There are many pivoting strategies, for example we could
e Choose that index j for which the reduced cost is the most negative
e Choose that index j for which 9 ¢ ; 1s the most negative
e Try to choose an index j that has not recently been chosen

e Bland's rule: Take the first index j for which the reduced cost 1s
negative

Note: More complex strategies often reduce the number of iterations at
the cost of more expensive iterations. Bland's rule 1s a good choice to
avoid cycling 1n the degenerate case.



89

The degenerate case

Two things can happen in the degenerate case:
« We want to release constraint j and let X enter the basis but we can't
go 1nto direction d=-B'1Aj because we immediately hit a previously

active constraint that was not part of the basis H.

In other words, we find that 9 =9, What do we do?

4
Example (not for standard form
linear problems): Constraints 1 and
2 are active. We want to release
constraint 1 but we can't move away

from 1it.

o
-

Xy
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The degenerate case

Two things can happen in the degenerate case:
o We let X enter the basis which then has (n-1) active constraints. We
move in direction d =-B'1Aj but at 9 we find more than one new

constraint.

In this case, which of these constraints should exit the basis?

X>

Example (not for standard form):
Constraints 2 and 3 are active. We
want to release constraint 3 and move
along constraint 2 but then both
constraints 1 and 5 become active.
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The degenerate case

Case 1: We find that ¢ =0

In this case, we know that more than »n constraints are active at the
current vertex, 1.e. some of the basic (“free”) variables in H are zero.

The question 1s then which of these variables to throw out of the basis
in response to letting X, enter the basis without taking a step that

decreases the objective function?

The question is important because we want to avoid cycling, 1.e.
returning to the same basis after a number of steps without reducing the
objective function.

Answer: There are a number of pivoting strategies. The simplest is
Bland's rule — 1f there are multiple constraints that become active, take
the one with the smallest index.
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The degenerate case

Case 2: We find that ¢ >0 but that more than one constraint
becomes active.

The question 1s then which of the variables whose constraints become
active to throw out of the basis (i.e. let them “exit the basis”) in
response to letting X enter the basis?

Answer: There are a number of pivoting strategies. The simplest is
Bland's rule — 1f there are multiple constraints that become active, take
the one with the smallest index.



93

The degenerate case

Theorem:
Using Bland's rule for selecting
 which variable will enter the basis

e which variable will exit the basis if there are multiple that are
eligible

avolds the problem of cycling and therefore guarantees that the
algorithm terminates in finite time.
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Starting the simplex method

Problem: The simplex algorithm needs to start from a feasible basic
solution.

Unfortunately, finding any vertex 1s almost as expensive as finding the
best one.

Typical strategy: The “two-phase simplex method”



Starting the simplex method

Starting point: Consider the problem

) T
min . C X

Without loss of generality, we can assume that b>0 . We seek a
feasible vertex of the feasible set and a corresponding basis.

Consider now the auxiliary problem

. T
min, g epe (1,1,...,1) Y
Ax+y=b
x>0
Notes: yz0

* For no (feasible) choice of y can the objective function of the
auxiliary problem be negative.

e It is zero if x 1s a feasible point of the original problem.

95 * It is positive if there 1s no feasible point of the original problem.



Starting the simplex method

Consider the auxiliary problem

min, g ,cpe (1,1,...,1)Ty
Ax+y=b
x>0
y=0

We can solve this problem using the simplex algorithm as discussed,
starting with the feasible vertex (x=0, y=b). The algorithm terminates
with either of these outcomes:

e The objective function is positive: The original problem has no
feasible point

e The objective function is zero: Then, y=0 and x 1s a feasible vertex
with respect to the original problem.
Furthermore, at least n variables among the x,y are at their bounds,
and at most m variables are greater than zero
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Starting the simplex method

However, we need more to start the simplex algorithm on the
original problem:

We need a basis H, which then implies the location of the vertex as
well as the basis matrix B.

Can we use the final basis H _(consisting of m free variables) of the

simplex algorithm applied to the auxiliary problem?

o If the vertex we find 1s non-degenerate, then all m entries in H are

aux

components of x (because y=0) and we can use H=H

aux

o If the vertex 1s degenerate, then H  contains variables that are zero

aux

at the solution and could contain auxiliary variables y.
We then need a procedure to “drive artificial variables out of the

basis”’.
97



Starting the simplex method

Driving artificial variables out of the basis:

H has m entries but some of them correspond to auxiliary variables

aux

and only k<m non-artificial entries.

We need a basis H with m non-artificial entries. We can let currently
non-basic variables X (for which xi=0) enter this basis, but we need to

make sure that the corresponding basis B retains full rank. The
following procedure guarantees this:

While k<m:

e Let [>k,I<m be an index in Ha so that (Haux)lcorresponds to an

ux

artificial variable
» Choose j<m so that (B, Aj)l;éO

\{[H

aux

« Replace H «H I}U{ jl and re-assemble B

98

aux aux
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The two-phase simplex algorithm

1.Remove linearly dependent constraints from the matrix A
2.Multiply constraints as necessary so that p>
3.Introduce artificial variables yeR™ and solve the auxiliary problem

4.1If the objective function at the solution 1s positive the original
problem does not have a feasible solution. Terminate.

5.Given H , B, drive artificial variables out of the basis until they

ux aux

only contain non-artificial variables

6.5¢et H=H ,B=b

X

7.S0lve the original problem using the simplex algorithm




100

Implementing the simplex method

Naive implementation:

In a naive implementation, in each iteration we have to

e Compute B o(m’)
e Compute reduced costs O(m(n-m))
* Compute a search direction O(m’)
e Compute a step length O(m)

Thus, the total effort is O(m’+mn) per visited vertex.

Better implementations: We can achieve the same result using only
O(m’+mn) operations per visited vertex. This uses, for example,
updating rules to compute B’ from the basis matrix used in the
previous iteration.
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Complexity of the simplex method

Overall complexity: In the best case, each iteration costs O(m’+mn).
How many iterations does one need?

In practice: In most applications, the number of iterations appears to
be a small multiple of the number of constraints .

In theory: For most pivoting rules, examples are known where every
single vertex 1s visited. These examples typically involve the 2"
vertices of the unit cube with n variables and m=2n constraints.

Questions:
 How often does this happen?
e Is this a property of individual algorithms/pivoting rules?

e Is this a property of linear problems?



Complexity of the simplex method

Definition: The distance d(x,y) between two vertices x,y of a
polyhedron P i1s the length of the shortest sequence of steps through
intermediate vertices.

Definition: The diameter diam(P) of a polyhedron P 1s the maximal
distance between any two vertices of P.

Xz

. d(x,y)=2
/ diam(P)=2
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Complexity of the simplex method

Corollary: For any pivoting rule, for a bad choice of initial vertex, we
always need to expect that we need at least diam(P) iterations.

Question: Do we know anything about diam(P) for given n,m?

103
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Complexity of the simplex method

Definition:
Let A(n,m) = max, g diam( P)
P={xeR" Ax>b}
Pis bounded
A,(n,m) = MdX , . gr diam (P)

P={x€R": Ax>b|

Corollary:

Al2m) = 7]
A, (2,m) = m—2
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Complexity of the simplex method

Hirsch conjecture:

A(n,m) £ m—n

Consequence: This would imply that we could hope to find a pivoting
rule that always terminates in O(m) iterations for bounded problems.

Theorem:

m—(n—|=]) < Au(n,m) < (Yn)logvm

In other words, the best known upper bound for the diameter of
unbounded polyhedra i1s not exponential, but worse than polynomial in
n,m.



Complexity of the simplex method

Theorem (Borgwardt 1982):

Consider solving the following problem with the ‘“shadow vertex”
variant of the simplex algorithm

. T
min, g.C X
ax=1, i=1..m

where the vectors ¢, a. are chosen randomly 1n R™\[0]-

Then the average number of iterations necessary is less than
1
17n°m"!

Note: This does not match practical experience.
106
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Complexity of the simplex method

Theorem (Haimovich, Adler 1982):

Consider solving the following problem with the ‘“shadow vertex”
variant of the simplex algorithm

. T
min g.C X
a.x=b, i=1..m

where the vectors ¢, a,b are chosen randomly with some assumptions.
l

Then the average number of iterations necessary is less than

m—n-+2
m+1

Under less stringent assumptions, the number of iterations 1s bounded
by

n

Cmin {(m—n)*n’]
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Abstract duality
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Weak duality

Theorem:

Consider any function F(x,y):XXY—R ,then VxeX, yeYy

*

F*(y)=minx’EXF<X'9y) < F(X,_Y) = maXy’EYF(X)y'>=F (X)

Corollary (weak duality):

max ., min, ., F(x,y) < min, max ., F(x,y)

yeyY xeX

109
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MinMax vs MaxMin

Example:

Assume there are two players A,B. In a game, player A can play moves
x from a set X, player B can play moves y from a set Y. F(x,y) will be
the payout from A to B.

It A gets to play first, she would like to play a move x* so that the
payout 1s minimal even if B responds with her best move:

maXyEYF(x,y)=F*(x) — min!

With A's best (defensive) move, the payout from A to B will be

min,_ymax ., F(x,y)

xeX

On the other hand, if A has the advantage of going second and react to
player B's move, the payout will be

max ., min,., F(x,y) < min, max ., F(x,y)

yey xeX



MinMax vs MaxMin

Example:
Player A can play moves x ,x , player B can play y ,y . The payout from

A to B 1s given by the following matrix:

Yi Y
x, [-1 2)
x, |4 3

It A gets to move first, she should play x , to which B will counter with

y,- As aresult A will have to pay

min,, max ., F(x,y) = 2

If B gets to move first, the moves will be Y, and X, with result

max ., min, ., F(x,y) = 2
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MinMax vs MaxMin

Example:
Player A can play moves x ,x , player B can play y ,y . The payout from

A to B 1s given by the following matrix:

Yi Yo
x, [-1 2)
v, |4 1

It A gets to move first, she should play x , to which B will counter with

y,- As aresult A will have to pay

min,, max ., F(x,y) = 2

If B gets to move first, the moves will be Y, and X, with result

max,.,min, ., F(x,y) =1
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Duality gap

Definition:

For a given function F(x,y) we have shown that

max ., min, ., F(x,y) < min, max ., F(x,y)

yeY X€X
We call
G(F) = min,,max, ., F(x,y)-max,minF(x,y)
the duality gap.
Note:
Depending on F(x,y), the duality gap can be zero, finite, or plus
infinity.
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Strong duality

Theorem (strong duality 1):

For a given function F(x,y), assume there exists a point (x*y*) so that

F(x,y) < F(x,y) < F(x,y) Vx€X,yeY

(such a point is called a saddle point). Then there holds

max,.,min,, F(x,y) = min, ,max ., F(x,y)

yey XEX

1.e. the duality gap G(F) 1s zero.

Theorem (strong duality 2):

The converse is also true: If the duality gap is zero, then there exists a
saddle point.
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Lagrangian duality

115



Lagrangian optimization

Consider the following (possibly nonlinear) optimization problem:

minimize, f(x)
subjectto g(x)=>0
xeX

Introduce the Lagrangian

L(x,A) = f(x)=2"g(x)

L:XXY->R, Y={A€R":A>0]
Define

L'(x) = max, _, L(x,A)
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Lagrangian optimization

Theorem:

The solution x* of the optimization problem

minimize, f(x)
subjectto g(x)=>0
xeX

equals the solution of the optimization problem

max, . L(x,A)

minimize ., L (x) = minimize ., max,

and  fx*)=L*(x*).

Note: This is trivially extended to problems with equality constraints.
In this case the space Y places no restrictions on the sign of the
117  Lagrange multiplier.



Lagrangian optimization

Definition:

We call .
minimize, f(x)

subjectto g(x)=0
xeX

the primal problem. It corresponds to the min-max problem

minimize,., L (x) = minimize ., max,_, L(x,A)
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Lagrangian optimization

Definition:
We call

maximize,_, L.(A) = maximize,_, min _, L(x,A)

the dual problem. It can only be written in the form

maximize, _, f(A)

if the minimizer x of L(x,A) for a given A has a closed form solution

x(A).
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Lagrangian optimization

Theorem:

Consider an optimization problem
minimize, f(x)
subjectto g(x)>0

. xeX
and its dual

maximize,_, L.(A) = maximize,_, min _, L(x,A)

xeX

Let x* A* be their solutions. Then

L) < f(x)

Proof: Follows from the weak duality theorem
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Primal and dual problems

Example 1:

Consider minimize, f(x)=x"

subjectto g(x)=x—1=0

with solution x*=1 and f(x*)=1. Then
Lix,A)=x"=A(x-1)
and the dual problem 1s
maximize, . ,L.(A), L.(A)=min L(x,A)=A—=A°

The solution to the dual problem is
A'=2 L.(A)=1
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Primal and dual problems

Example 2:

Consider minimize, f(x)=e"

subjectto g(x)=1-x"

>0

with solution x*=-1 and f{x*)=e". Then
L(x,A)=e"-A(1-x")

and the dual problem 1s

maximize, ., L.(A), L.(A)=min L(x,A)
Here, L*(A) does not have a closed form expression since the

minimizer of L(x,A) for a given A does not have a closed form
expression.

Note: This problem could have been avoided by writing the constraints
122 as —1<x<1.



Primal and dual problems

Example 3:
Consider minimize, f(x)=—x’
subjectto x=1
x€X=0,2|

with solution x*=1 and f(x*)=-1. Then

Lix,A)=—x"=A(x—1), x€[0,1],AeR
and the dual problem 1s

maximize, g L.(A),

L.(A)=ming,, L(x,A)=| A ford<—2
—4—-) for A>-2

Here, L*(A*)=-2. Consequently, the duality gap is G(L)=1.
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Primal and dual problems

Example 4:

Consider minimize, f(x)=—x’
subjectto 0<x<1

with solution x*=1 and f(x*)=-1. Then

L(x,A)=—x"=A,x=A,(1-x)

and the dual problem 1s

maximize, ., L.(A),

L.(A)=min___L(x,A)=—o

XER

Here, L*(A*)=-. Consequently, the duality gap is G(L)=<°.
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Primal and dual problems

Question:

Sometimes, it may be simpler to solve the dual rather than the primal
problem.

In general, due to the duality gap, the solution of the dual problem only
provides a lower bound on the optimal objective function value of the
primal problem.

However, 1if we knew that the duality gap 1s zero, then we could get
away by only solving the dual problem.



Convex duality

Theorem (Convex duality):
Let the primal problem be

minimize, f(x)
subjectto g,(x)>0, i=1..m

where f(x) 1s convex and each component gi(x ) 1s concave (i.e. the

feasible set 1s convex). Let x* be a solution and assume that
rank (Vg (x'))=min{n,m|

Then the duality gap for the Lagrangian 1s zero.
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Convex duality

Note:
If the primal problem

minimize, f(x)
subjectto g,(x)>0, i=1..m

does not have a feasible solution, then we say that
min, f(x)=o0

and we will have
max, L.(A)=o

Example:

Take f{x)=x", g(x)=-1-x".
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Formulating dual problems: Wolfe dual

Example 2, revisited:

Consider minimize, f(x)=e"

subjectto g(x)=1-x’

>0

with solution x*=-1 and f{x*)=e”’. Then  L(x,A)=e*—A(1-x°) and the
dual problem 1is
maximize,. , L.(A), L.(A)=min L(x,A)

L*(A) does not have a closed form expression since the minimizer of
L(x,A) for a given A does not have a closed form expression.

However: Since f,g are differentiable, the minimizer x*(A) must satisfy

V. L(x,A)=0



Formulating dual problems: Wolfe dual

Example 2, revisited:

Consider minimize  f(x)

subjectto g(x)>0 and assume f, geC'

The Lagrangian 1s L(x,A)=f(x)-Ag(x) and the dual problem 1s

maximize,. , L.(A), L.(A)=min L(x,A)
Alternatively: The dual problem can also be formulated as

maximize, ,,, L(x,A)
subject to V.,L(x,A)=0

This formulation is called the Wolfe dual. The Wolfe dual i1s often

simpler to formulate, since we do not need to eliminate x right away.
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The dual of a linear program

Consider the following linear program:

minimize, f(x)=c x

subjectto Ax=b
x>0

The Lagrangian is L(x ,{y,}\})chx—yT(AX—b)—)\Tx and the Woltfe dual

is
maximize, , ., L(x,[y Al)=(c =y A=A )x+y' b

subject to V.L(x,[x,Al)=c =y A=A =0
We can use the constraint to eliminate x from the problem:

maximize, , b y
subject to ¢ -y A-A"=0
This 1s equivalent to the following linear problem:
maximize, b y
130 subjectto  A'y<c
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The dual of a quadratic program

Let Q be positive definite and consider

minimize , f(x)= %XTQX-I- C' X

subjectto Ax>b

The Lagrangianis [(x, )\):% x Qx+c x—A'(Ax—b) and the Wolfe dual

® maximize, ,., L(X,?\)=%XTQX+CTX—)\T(AX—I))

subject to V.L(x,A)=Qx+c—-AA=0

We can again use the constraint to eliminate x from the problem:
maximize, —A'(A Q_IAT))H-(AQ_chrb)TA—%CTQ_lc
subjectto  A>0

In other words: The dual of a linear quadratic program 1s a linear
quadratic program! This pair of problems can not have a duality gap!



Part 19

Primal-dual methods for
linear problems
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Primal vs. dual problems

Theorem:

Let a primal linear program and its dual be described by

minimize, ¢ X maximize, b y
subjectto  Ax=b subjectto A’ y+s=c
x=0 s=0

Let {x*y*s*} be their solutions and let {x,y,s} satisfy the equalities
and 1nequalities

Then we have the following lower bound on the optimal value of the
objective function:

123 flx)=c'x > ¢ x—s x
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Primal vs. dual problems

Corollary:

Let a primal linear program and its dual be described by

minimize, ¢ X maximize, b y
subjectto  Ax=b subjectto A’ y+s=c
Xz 5>

Then any solution {x*,y* s*} of the system of equations
Ax=b
X="
A y+s=c
S=>
T
X s=:
1s a solution to the primal and dual problems, respectively.

Note: Since x,s are non-negative, the last condition can also be written
as xjsj=0 for all j. This is called strict complementarity.
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Primal-dual algorithms

Observation:

Any feasible point of the set of nonlinear equations
Ax=b
x>0
A y+s=c
s=>0
X' s=0
generates a solution of the original linear program (though not
necessarily a vertex).

If we had efficient algorithms for finding feasible points, this would
also provide efficient methods for linear programming problems.

If we have points that satisfy the first four but violate the last equation,
we can judge the quality of the current approximation using the
previous theorem.
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The primal-dual interior point method

We want to solve

=
| |V||
S -

(@)
vV
O 0

A y+s

~<

»
]

O

, j=L.n

—.
~

Consider a starting point {xk,yk,s /(} that 1s feasible with respect to the

first four (in)equalities and with
Ukj=<xk>j(sk)j20

It ;=0 then we have a solution. Otherwise, find a better approximation
{ka,yk”,skH } that 1s still feasible with respect to the first four

(in)equalities and with

(Xi1) i (Sear) FH g <my,  forall j=1..n
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The primal-dual interior point method

Algorithm:
Given {xk,yk, ) Ml find {Axk,Ayk,As Ml where

A(x,+Ax,)=b
AT(Yk"'AYk)"'(Sk‘I'ASk):C
(Xk)jASj+(sk)ijj=uk+l_<Xk)j(sk)j

In general, {x +Ax,y +Ay s +As } will not satisfy the inequalities

x,+Ax, >0, s,+As,>0

Consequently, set

X=X too Axy, Vs =Yt o Ay, Ski1=Sita As,

where

o<*=(1 —10_5) max (X, +&A x,>0,5,+xAs; >0}



138

The primal-dual interior point method

Theorem:
If

7
O<uk+1=9[,lk, for 9=1—m

then the algorithm converges to a solution of the primal and dual
problems (not necessarily a vertex), and the overall algorithm needs at
most

O(|loge|VnL)

iterations to achieve an accuracy of ¢ . Here, L 1s the number of bits
needed to encode the coefficients of the problem.

Note: Each iteration requires O(n”’) operations. The algorithm is
therefore of polynomial complexity.

Note: In practice, one can choose significantly smaller values of theta
and still obtain convergence.
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The primal-dual interior point method

Remark:

The primal-dual interior point method can be derived in many different
ways. In particular:

e It 1s equivalent to a barrier method approach

e It 1s similar to the Karmarkar algorithm of 1984 which described for
the first time a practical algorithm that 1s (1) of polynomial
complexity, and (1) competitive with the simplex algorithm on
many practical problems.

Interior point methods are often faster than the simplex algorithm 1f
* The problem 1s degenerate
e No good 1nitial guess 1s available
e The number of constraints 1s very large

e The matrix A 1s not sparse



Part 20

Integer programming problems
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Integer programming

See distributed chapters of the book by Bertsimas and Tsitsiklis.
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Part 21

Optimal Control: Examples

142



Definition of optimal control problems

Commonly understood definition of optimal control problems:
Let

e X be a space of time-dependent functions

e O be a space of control parameters, time dependent or not

* f:XXQ—IR be a continuous functional on X and Q

* [:XXQ—Y be a continuous operator on X mapping into a space Y

e g:X—Z  beacontinuous operator on X mapping into a space Z

« h:Q—-2Z, be a continuous operator on  mapping into a space Zq

Then the problem
1‘nlnx =x(t)eX,qeqQ f(X(t) )
such that L(x(t),q)=0  Vtelt,t,]
g(x(t)) =20  Vtelt,t]
h(q) =0

143 1s called an optimal control problem.



Definition of optimal control problems

Remark:

For existence and uniqueness of solutions of the problem

MiN, _, e x.qeq

f(x(t),
such that L(x( )

g(x(

h(q)

(g N
N———"
— -

>
>0

q

one will need convexity properties of f,L,g,h

In order to state optimality conditions, we will in general also require
certain differentiability properties.
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Example 1: Trajectory planning

The trajectory of the Cassini space probe from Earth to Saturn:

WEMLUS 1 FLYEY .
26 APR 1952

WEMUS 2 FLYBY
24 LM 1995

LALIMNCH
15 OCT 1957

EAFRTH FLYEY
18 ALIG 1999

Goal: We want to get from A to B using the least amount of fuel, in the
145 least amount of time, ..., subject to Newton's law.



Example 1: Trajectory planning

Version 1: Minimal energy trajectory
* X=[x(t):x€H ([0,T])|={x(t):x(t)€L([0,T])", x(t)€L’((0,T))]
» Q=[u(t):ueL”([0,T))’} c L*([0,T))
*f:Q—-R
* L:XXQ-Y, Y=H'([o,T))’=H"(0,T])
* 9:X-Z =R’XR’
* h:Q—Z,=L"([0,T))

*

Then the problem 1s as follows:

T
minx=x(t)€X,q€Q fo |U(t)|
such that mx(t)—ku(t)=0 YV t€|0,T|
x(0)=Earth, x(T)=Saturn
u_ —|u(t)] >0  Vteg[0,T|
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Example 1: Trajectory planning

Remark 1:

A more realistic formulation would take into account that the mass of
the space ship diminishes as fuel 1s burnt:

m=m(t)=m(*)— [ |u(t)

Remark 2:

The formulation on the previous page i1s nonlinear because of the
absolute values lu(t)l. The objective function can be made linear by
using the following reparameterisation:

u(t)=u(t)o(t), a(Her’, oeS

On the other hand, the ODE constraint will then be nonlinear (a
complication that 1s usually easier to handle).



Example 1: Trajectory planning

Version 2: Minimal time trajectory
* X=H'([0,T])
+ Q=lu(t), TI=L™([0,T]) xR,
*f:Q—-R
e [:XXQ-Y
. g:X—>ZX=IR3><IR3

* h:Q—-Z,=L"((0,T])
Then the problem 1s as follows:

minx=x(t)€X,q€Q I

such that mx(t)—ku(t)=0 Y t€|0,T|
x(0)=Farth, x(T)=Saturn
u_ —u(t)) =0  Vteg0,T]
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Example 1: Trajectory planning

Version 3: Minimal thrust requirement trajectory
* X=H'([0,T])
+ Q=[u(t), tne ]=L7((0, TI) ¥R,
*f:Q—-R
e [:XXQ-Y
. g:X—>ZX=IR3><IR3

* h:Q—-Z,=L"((0,T])
Then the problem 1s as follows:

minx=x(t)€X,qEQ Unax

such that mx(t)—ku(t)=0 Y t€|0,T|
x(0)=Farth, x(T)=Saturn
u_ —u(t)) =0  Vteg0,T]
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Example 1: Trajectory planning

Remark 1:

Problems with a similar formulation appear in planning the paths of
e mobile robots
e air planes, manned or unmanned

e the arms of stationary robots (e.g. welding robots on assembly
lines)

e braking a car without exceeding the maximal force the tires can
transmit to the road

Remark 2:

For some problems, 7=%. These are called infinite horizon problems.
An example 1s the problem of keeping a satellite or airship stationary at
a given point above earth.



Example 2: Chemical reactors

. State:
Concentrations xi( t) of chemical

species i=1...N.

Controls:
Pressure p(t), temperature 7(z).

Goals:

e Maximize output of a
particular species

e Maximize purity
e Minimize cost

e Minimize time
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Example 2: Chemical reactors

Version 1: Maximize yield of species N

MIN, ) (o), 7(0) —xy(T)
such that x(t)—f (x(t), p(t),T(t))=0 Yte|0,T|
x(0)=x,

po<p(t)<p;, To<T(t)<T,  Vt€[0,T]
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Example 2: Chemical reactors

Version 2: Minimize reaction time, subject to minimum yield

constraints:

I, () p(e), (1)

such that

T

x(t)=f (x(t),p(t),T(t))=0
x(0)=x,

pOSp<t)Sp1, To<T(t)<T,

XyZX N min

Yte|0,T]|

Vtel0,T]



Example 2: Chemical reactors

Version 3: Minimize cost due to heat losses (with a heat loss factor
alpha) and due to the cost of changing the temperature by cooling and
heating (with a cost factor beta), subject to minimum yield constraints:

such that x(t)—f (x(t), p(t),T(t))=0 Vte|0,T|
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Part 22

Optimal control:
The shooting method
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The solution operator

Definition:
Let the ordinary differential equation of the state and control variables
be given by

x(t)=f(x(t),q)=0  Vtelt,t]
x(t;)=g(x0,q)

Let x(t) solve this set of equations for a given set of control variables g.
Then define

S(q,xmti:t)::X(t)

In other words: S is the operator that given controls and initial data
provides the value of the corresponding solution of the ODE at time 7.
We call S the solution operator.

Note: If the ODE 1s complicated, then S is a purely theoretical
construct, though it can be approximated numerically.
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The solution operator

Corollary:
Consider the optimal control problem

. 1 2
mlnx(t),q 5 (X ( tf) _Xdesired)

x(t)=f(x(t),q)=0  Vtelt,t]
x(t)=g(xy,q)

It 1s equivalent to the problem

2

.1
mmq E(S (q ,Xo,tiatf)_xdesired

Note 1: Similar reformulations are trivially available if the objective
function has a different form or if there are constraints.

Note 2: If we can represent S and its derivatives, then we can apply
Newton's method (or any other optimization method) to the
reformulated problem.



158

The shooting method

Algorithm:
Starting from the formulation

2

1
(S (q 3X0’ti’tf)_xdesired

min —
)

we can think of the shooting method as an iterative procedure that does
the following steps:

e Start with a certain control value ¢
e See where the trajectory S(g,...) takes us for this control value

 If we “overshot” the goal, then do the same again with a smaller
value of ¢

 If we “undershot” the goal, then try a larger value of g
e Iterate until we have the solution we were looking for
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The shooting method: An example

Example: Charged particles in a magnetic field
Charged particles moving in a magnetic field follow the Lorentz force:

mi(t)=ex(t)xB(x(t),t)

Here, e 1s the charge of the particle and B(x(z),¢t) is the magnetic field at
the location of the particle at time ¢. Assume the magnetic 1s constant
but that the magnitude is adjustable.

Given 1nitial position and velocity, find the value of B for which the
particle passes through location x

esired

Formulation:

, 1
mlnx(ﬂ,B,T E (X (T)_ Xdesired)2




The shooting method: An example

Example: Charged particles in a magnetic field
For the equation of motion

0
Vo

and 1f B 1s perpendicular to the x-y plane, then we can write down the
exact trajectory:

mx(t)=ex(t)XB,  x(0)=0, x(0)=

x(t)= 1—coswt
sin t
where
p=_Vo , w=V0=e||B||
e||B|| rooom

Then we know the solution operator in closed form:

1—cos wt

S(B,0,t)=r|""
S1n wt
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The shooting method: An example

Example: Charged particles in a magnetic field
We can now restate the original problem

, 1
mlﬂx(t),B,T E <X (T >_ Xdesired)2

x(0)=x,
X<O)=V0
as follows:
| 1 2
. 2 1—coswT
min —_ S B; O,T —X esire = Z|r —X esire
B,T 2( ( ) d d) ) Sinew T desired

Note: This 1s a nonlinear optimization problem in two variables (B,T)
that we can solve with any of the usual methods.
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The shooting method: Practical implementation

Consider the optimal control problem with control constraints:
min, ., . F(x(t),q)
x(t)=f(x(t),q)=0  Vtelt,t;]
x(t)=9(x,,9)
h(q)>0

It 1s equivalent to the problem
minq F(S<q,XO: t,-,t),CI)
h(q)=0

Using the techniques we learned last semester (e.g. the active set
method, barrier methods, etc), we can solve this problem. However, we
will also need first and second derivatives of F with respect to g!

162



163

The shooting method: Computing derivatives

By the chain rule, we have

d
1a —F(S(q,x,,t,t),q)

l

d
=VSF( (q Xo,tl,t),CI) dq,

In other words, 1n order to compute derivatives of F, we need
derivatives of S. To compute these, remember that

S(q,XO,ti,t>=X(t)

where x(1) :xq( t) solves the following ODE for the given value of g:

x(t)=f(x(t),q)=0  Vtelt,t/]
x(t;))=9g(x0,q)



The shooting method: Computing derivatives

By definition:

S(gt+ee,x,,t.,t)=5(q,X,,t;,t
d —S(q, Xo,t;,t)=lim__, (+€ep Xy, ti,0)=S(q, X, 01,1)
dq, €

Consequently, we can approximate derivatives using the formula

g0 xS0 080t =5 (4,00, 1) _ XerselD)7X,(1)
dq, 5 5

for a finite 6>0. Note that xq( t)and x _ (t) solve the ODEs

g+0ei

X, (t)=f (x,(t),q)=0 Xgsse (0) = (Xgp50 (£),q+0 €,)=0
x(t:)=9(x0,9) Xerse(1)=g (X0, +5 )
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The shooting method: Computing derivatives

Corollary:
To compute V _F(S(q,x,,t;,t),q) we need to compute

Vqs(q,xo:tvt)

For geRR" , this requires the solution of n+/ ordinary differential
equations:

 For the given g:

e Perturbed in directions i=1...n:

Xq-l—éel.(t)_f(xq-l—éei(t)? q+5el)=0

Xq+5ei<ti>=g(X0’q+5ei)
165
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The shooting method: Computing derivatives

Practical considerations 1:
When computing finite difference approximations

d S(q+de;,Xo,t;,t)—=S(q, X, t;,t) Xq+5e-<t>_xq<t)
S(q,Xo,t;,t)~ = |
dq, ) )

how should we choose the step length 3?

O must be small enough to yield a good approximation to the exact
derivative but large enough so that floating point roundoff does not
affect the accuracy!

Rule of thumb: If
* ¢ 1s the precision of the machine's floating point number format
* g 1s a typical size of the ith control variable g,

then choose 5:&@ :



The shooting method: Computing derivatives

Practical considerations 2:
The one-sided finite difference quotient

S(q+5ei)X0:ti:t>_S(qJX05 ti)t) — Xq+5ei<t>_xq<t)

d
——S(q, xy,t,t)~ =
dqi (q’XO’ i’ ) 5 5

is only first order accurate in O, i.e.

S(g+oe,x,,t,t)=5(q,x,,t,t
%S<q)X0’ti?t)_ (q l 0 6) <q 0 )=O(5)
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The shooting method: Computing derivatives

Practical considerations 2:

We can improve on this by using the two-sided finite difference
quotient
S<q+5 eiJXO)ti)t)_S (q_5 eiJXO,ti:t) _Xq+5ei<t)_xq_5ei<t>

d
PP 26 20

which is second order accurate in 0, i.e.

S(g+oe,x,,t, t)=S(g—oe,,x,,t,t
iS<q3X0)ti)t)_ <q - ) (q - )=O(52)
dq, 20

Note:

The price to pay for this higher accuracy 1s that we now have to solve
2n+1 ordinary differential equations!
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The shooting method: Computing derivatives

Practical considerations 3:

To approximate derivatives (using, for example, the one-sided finite
difference quotient), we have to solve the ODEs

x,(t)=f (x,(t),q)=0
Xq(t1)=g(X0,q)

Xeiso ()= f (X445, (£),q+5 €)=0 i=1...n
Xq_|_5ei(ti)=g (X0,q+0 ¢

If we can do that analytically, then good.

If we do this numerically, then numerical approximation introduces
systematic errors related to

 the numerical method used
 the time mesh (i.e. the collection of time step sizes) chosen
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The shooting method: Computing derivatives

Practical considerations 3:

We know that we can gain the highest accuracy in the numerical
solution of equations like

i (0)=f (x,(0)q)=0
Xq(t,-)=g(x0,q)

by choosing highly sophisticated adaptive time step, extrapolating
multistep ODE integrators (e.g. RK45).

On the other hand, to get the best accuracy in evaluating

d Xq-l—5e (t>—Xq(t>
—3S t
d ql <q XO’ 17 ) 5
experience has shown that we should use predictable integrators for all

ODE solvers that for all variables xq(t), Xqioe (t) use

 the same numerical method
 the same time steps
* no extrapolation
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The shooting method: Computing derivatives

Practical considerations 3:
To solve the collection ODEs

x,(6)=f (x,(t),q)=0 Xgise (1) =1 (X415, (8),q+0 €)=0
x(t:)=9g(x0,q) X,s.(1)=g (x0,q 0 €)

it therefore turns out to be useful to not solve them individually but
instead solve them all at once as

X, (1) flx,(6),q)

i Xq+51e1<t) _ f(xq+5lel<t)5 q+6lel) =()

Xprao O] 1f(x,,5, (t),q+0,e,)

Xq(ti) g(X,,q)
Xq+61e1<ti> — g(XO’q+5lel)

Xq+6nen<ti> g(XO’q+5n en)
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The shooting method: Computing derivatives

Practical considerations 4:

If we use the BFGS method, we only need first order derivatives of
F(S(q),q), but if we want to use a full Newton method we also need

2 2

d
_S )X )ti)t ’

S(CI:XO’ti’t)

These can also be computed using finite difference methods:

Xq-l—éei(t)_xq(t) Xq(t>_xq—6ei(t>

d 5 6 Xq-l—(Se.(t)_2Xq(t)+xq—6e.(t)
—S(q, %y, t;, )~ =1 : 1
dq; 0 )

Xq-l—éel.-l—(Sej(t)_ Xq—éel.-l—éej(t)_ Xq-l—éei—éej(t)_Xq—éei—éej<t>
20 20
5(q,xy,t,t)=
dq, dq]' 4 ’ ) 20

Note: The cost for this operation is 3" ODE solves.



The shooting method: Practical implementation

Algorithm:
To solve the optimal control problem with control constraints
min,,, . F(x(t),q)
x(t)=f(x(t),q)=0  Vtelt,t]
x(t)=g(xy,q)
h(q)=0
reformulate it as

minq F(S(q,Xo,ti,t),Q)
h(q)=0

Solve 1t using your favorite nonlinear optimization technique where

* by the chainrule '/ F(S,q)=F,(S,q)V,S(q, %, t,0)+F(S,q)
and similarly for second derivatives

* the quantities V S(q,,,t;,t), V ’S(q, X,,t.,t) are approximated
by finite difference quotlenlts by solvmg mhluple ODEs for

173 different values of the control variable g



The shooting method: Practical implementation

Implementation (Newton method without line search; no attempt
to compute ODE and its derivatives in synch):
function f(double[N] q) —double;

function grad_f(double[N] q) —double[N];

function grad_grad_f(double[N] q) —double[N][N];

function newton(double[N] q) —double[N]

{
do {

double[N] dq = - invert(grad_grad_f(q)) * grad_f(q);
q=q+dg;
} while (norm(grad_f(x)) > le-12); // for example

return Xx;
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The shooting method: Practical implementation

Implementation (objective function only depends on x(7)):

function S(double[N] q) —double[M]
{
double[M] x = x0;
double t = t1;
while (t<tf) {
X = X + dt * rhs(x,q); // explicit Euler method with fixed dr
t=t+dt;
}

return Xx;

function f(double[N] q) —double
{

return objective_function(S(q),q);

175 }




The shooting method: Practical implementation

Implementation (one-sided finite difference quotient):

function grad_f(double[N] q) —double[N]
{
double[N] df = 0;
for i=1...N) {
eps = le-8 * typical_q[1];
double[N] q_plus = q;
q_plus[i] = q[1] + eps;
dffi] = (f(q_plus) — f(q)) / eps;
}

return df;
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Part 23

Optimal control:
The multiple shooting method
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Motivation

In the shooting method, we need to evaluate and differentiate the
function

S(C[,Xo,ti,t)=xq(t)
where xq( t) solves the ODE

X(t)=f (x(t),q)=0  Vtelt,t,]
X(t1)=g<xoaQ>

Observation:
It the time interval /7, tf] 1s “long”, then S 1s often a strongly nonlinear

function of gq.

Consequence:

It 1s difficult to approximate S and its derivatives numerically since
constants 1n error terms typically depend on higher derivatives of §
times terms like ¢"' where L is a Lipschitz constant and 7= [t



Idea

Observation:
If the time interval /7, tf] 1s “long”, then S 1s often a strongly nonlinear

function of g because of the exponential term.
But then S should be less nonlinear on smaller intervals!

Idea:
While S(q,x 1,1 f) 1s a strongly nonlinear function of g, we could

itroduce

=1 <1 <. <1 <...< 1=t
i 0 1 k K f
and the functions S( qx,t,t ) should be less nonlinear and therefore

simpler to approximate or differentiate numerically!
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Multiple shooting

Outline:
To solve min,,, . F(x(t),q)
x(t)-f(x(t),q)=0  Vtelt,t]

x(t)=g(xy,q)
h(q)=0

replace this problem by the following:
min oo FX(E),Q)

where x (t): =§§ “(t) Vielt,_,,t,]
such thatx' (¢t)—f(x'(t),q)=0  Vt€lt, )]
X' (t)=g(x,,9)



Multiple shooting

Outline:

In the formulation on the previous slide, every x* depended explicitly
on x'. We can decouple this as follows:

M i F(x(t),q)
where x(t):=x"(¢ ) Vielt,_,,t |

such thatx“(t)—f(x"(t),q)=0  Vte€[t, ., t],k=1...K
k A~k
X (t,)=%,
)?(1)_9<X0,CI)=0
R—x(t,_,)=0 Vk=2..K
h(q)=0

Note: The “defect constraints™ g*_ - 1(tk_1)=0 do not need to be

satisfied in intermediate 1terat10ns of Newton's method. They will only
181  be satistied at the solution, forcing x(7) to then be continuous.



Multiple shooting

Outline with the solution operator:

By introducing the solution operator as before, the problem can be
written as

min&é"_,&gq F(S<q:xo’tiat))q)
Where S<q)X0:ti:t):=S(q:5€I(§9tk—13t) Vte[tk—l’tk]
such that X;—g(x,q)=0

X —x'(t,)=0 Vk=2..K

h(q)=0

Note: Through this reformulation, we now only ever have to
differentiate

Ak
S (q’xo’tk—l:t)
which integrates the ODE on the much shorter time intervals [ t ot )i

182  and consequently 1s much less nonlinear.
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Optimal control:
Introduction to the Theory
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Preliminaries

Definition: A vector space is a set X of objects so that the following
holds:

Vx,yeX: x+yeX
VxeX,xeR: axeX

In addition, associativity, distributivity and commutativity of addition
has to hold. There also need to be identity and null elements of addition
and scalar multiplication.

Examples:
X=R"
X=C"(0,T)={x(t):x(t) is continuous on (0,T)]
X=C'(0,T)=|x(t)eC’(0,T):x(t) is continuously differentiable on (0,T)]
X=L2(O,T)={x(t):f2|x(t)| dt< oo}
184



Preliminaries

Definition: A scalar product is a mapping
- XXY >R

of a pair of vectors from (real) vector spaces X, Y into the real numbers.
It needs to be linear. If X=Y and x=y, then it also needs to be positive

Or Zero.
Examples:
X=Y=R" <X,y>=2§v_1xiy1'
N
X, y)= Zi=1 «. Xy, with weights 0<x <o
X=Y=l, XY= Xy,
X=Y=1%(0,T) Xy x(0y(t)de
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Preliminaries

Definition: Given a space X and a scalar product
- XXY >R

we call Y=X'the dual space of X 1f Y 1s the largest space for which the
scalar product above “makes sense”.

Examples:

X=R" Xy=Y xy, y=R"

0 T
x=C"(0,T) xy=] x(y(t)d  ¥Y=S(0,T)

T
X=L%0,T) x,y=] x(0) y(t)de Y=L%0,T)
—_ TP T 14 1 1

X=L'(0T),1<p<o x,y=[ x(Oy(0d  Y=L'0OT), 4+ =1

186



Lagrange multipliers for finite dimensional problems

Consider the following finite dimensional problem:

l‘nianIR" f(X)

such that g, (x)=0
g,(x)=0
gk (x)=0

Definition: Let the Lagrangian be [(x,A)=f(x)- Zl_\ A.g.(x).
Theorem: Under certain conditions on f,g the solution of above

problem satisfies
oL

=
8x<x A=+, i=),..,N
L v = i=). K
0.
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Lagrange multipliers for optimal control problems

Consider the following optimal control problem:

min, f(x(t),t)
such that  ¢g(x(t),t)=0  Vt€|0,T|

Questions:

 What would be the corresponding Lagrange multiplier for such a
problem?

* What would be the corresponding Lagrangian function?
 What are optimality conditions in this case?
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Lagrange multipliers for optimal control problems

Formal approach: Given

min, f(x(t),t)
such that  ¢g(x(t),t)=0  Vt€|0,T|

Note: Formally, we now just have infinitely many constraints, one
constraint for each possible time instant!

Following this idea, we would then have to replace

Lix,A)=f ()= Y Agi(x).
by
L(x(t),A(t) - Al ) dt

where now we have one Lagrange multlpher for every time: ) (t)



Lagrange multipliers for optimal control problems

The *“correct’ approach: If we have a set of equations like

g,(x)=0
gz()f)=0

then we can write this as

which we can interpret as saying

g9(x),h=0  VheR"
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Lagrange multipliers for optimal control problems

The “correct” approach: Likewise, if we have

g(x(t),t)=0

then we can interpret this in different ways:
e At every possible time t we want that g(x(7),t) equals zero
e The measure of the set {t: g(x(1),t)#0} is zero (“‘almost all )
e The integral f g(x(t),t)f dt is zero
*If g:Xx[0,T|>V then g(x(t),t) 1s zero in V, 1.e.

fg t)dt=0 VheV'

Notes:
* The first and fourth statement are the same if y=C"([0,T|)
* The second and fourth statement are the same if y—7! ([0,T])
191 * The third and fourth statement are the same if V=[L’(]0, T|)



Lagrange multipliers for optimal control problems

In either case: Given

min, ., f(x(t),t)
such that g(x(t),t)=0

the Lagrangian is now

L(x(t),A(t)=f(x(t),t)= A, g(x(t)

AY ]
—~
N—
-

and

L: XXV '->R

192
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Optimality conditions for finite dimensional problems

Corollary: In view of the definition

V. f(x),)=lim_, [xF€B)=[1X)

€

we can say that the gradient of a function f: R*>R is a functional
V. f: R*S|RY:

In other words: The gradient of a function 1s an element in the dual
space of 1ts argument.

Note: For finite dimensional spaces, we can identify space and dual
space. Alternatively, we can consider R* as the space of column
vectors with K elements and (|RK) +as the space of row vectors with K
elements.

In either case, the dual product 1s well defined.



Optimality conditions for finite dimensional problems

Corollary: From above considerations it follows that for

lnianIR" f<X)
such that g, (x)=0
92<X)=0
9K<X)=O
we define
K
L(x,A)=f (x)=2, _ A,gi(x)
where
L: R'XR*>R
and

V.L: R"XR*=(R")’
V.L: R"XR"=(R")’
194



Optimality conditions for finite dimensional problems

Summary: For the problem

lnianIR" f<X)

such that g, (x)=0
92<X)=0
gx (x)=0

we define

le ll

The optimality conditions are then
V.L(x,A)=0 inR"
V.L(x,A)=0 inR"

or equivalently:

V.L(X'\\)E)=0  VEeR"
195 V,L(x',A),n=0  VneR*
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Optimality conditions for finite dimensional problems

Theorem: Under certain conditions on f,g the solution satisfies

oL
0X
oL

(x",A"=0, i=1,.,N

—(x,A)=0, i=1,.. K

I

Note 1: These conditions can also be written as

V,L(x',A),€/=0, VEeR"
V,L(x,X),n)=0, VneR"

Note 2: This, 1n turn, can be written as follows:

L(x +€&,A)=L(x,A)

V,L(x,A"),E =lim_, =0
€
. L(x ,A4en)—L(x,A°
<VAL(X , A ),n>=lim6_>0 (X A +en)—Lix, )=0,
€

VEeR"

Vv neR"



Optimality conditions for optimal control problems

Recall: For an optimal control problem

minx(t)EX f(X(t),t)
such that g(x(t),t)=0

with
g: XXR-V

we have defined the Lagrangian as

Lx(t),A(6))=f (x(t),6)=(A,g(x(t),¢),
L: XXV '->R

197
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Optimality conditions for optimal control problems

Theorem: Under certain conditions on f,g the solution satisfies

V.L(x',A),E/=0, VEeX
<VAL(X*,7\*),I’]>=O, Y nev
or equivalently
VL (1), X (1) &(t) di=0, VEeX
| VAL(X (0,47 (0) n(t) de=0,  Vnev

e e
o Jo XNy

Note: The derivative of the Lagrangian is defined as usual:

%

VL5 (0),0°(6)) (t) =tim,_, L () eBLA()= L0 (6). (6)

VL L((6),A° (1)), n(t))=1im 0L<X*() () +en(t)=L(x (t),A (1))

€
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Optimality conditions: Example 1

Example: Consider the rather boring problem

min o, Fx(0),0=] x(e)de

such that g(x(t),t)=x(t)—y(t)=0

for a given function (¢) . The solution 1s obviously x(t)=y(t). Then
the Lagrangian is defined as

L<X(t)’2\(t)>=:§x<t)dt_<A<t)’X(t)_‘/’(t)>
QZX(I)_A(I)[X(t)—LIJ(t)]dt

and we can compute optimality conditions in the next step.
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Optimality conditions: Example 1

Given

we can compute derivatives of the Lagrangian:

V. Lx(t),At)),E)

(

=lim__

1] [ (x(e)+eg(e) -] (¢ )+e«§<>> w()]dt




Optimality conditions: Example 1

Example: Consider the rather boring problem

mingo,  flx(e),0=], x(0)de
such that g(x(t),t)=x(t)—y(t)=0

The optimality conditions are now

V,LIx(0),A )£
'V, L(x(t),A(t),n

These can only be satisfied for

C[-A(0JE()de=0 VE(

T

J, ~x(6)=w(t)]n(t) dt=0  Vn(t)

1-A(t)=0, x(t)—y(t)=0, VO<t<T

201



Optimality conditions: Example 2

Example: Consider the slightly more interesting problem
. v
MmN, e x f(X(t),t)=f0 x(t)" dt
such that g(x(t),t)=x(t)—t=0

The constraint allows all functions of the form x(t)=a +§t2 for all
constants a. Then the Lagrangian 1s defined as

L(x(6),A(6)= [ x(ef de—A(t), (0t

Note: For x(t)=a -I—lt2 the objective function has the value

2
T
| x(t)Zdt=fT a+ie| =Ll r
0 0 2 20 3
1

which takes on its minimal value for g=—=T>
202 6
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Optimality conditions: Example 2

Given

we can compute derivatives of the Lagrangian:

VL L(x(1),A(t)),E)

(

=lim_ L fcf<X<t)+€§(t))2—?\(t)[k(t)+e'§(t)—t]dt
[T (Pl [x(0)~¢] de
im [ 2ex(teOreele-Noleg(o)] d

=[ 2x(t)E(t)-A(0)E(1) de
Z [2x(6)+A(0)]E () de—[A () E(0) 2

T

V L(x(e),A(0), 0=, ~[x(e)-t]n o) d

\

)
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Optimality conditions: Example 2

The optimality conditions are now

VL LO(0,A(0),E)= [, [2x(0+A(O]E() de=[a(0)E(0)],=0 V(1)

WV, Lix(6),A(0),n)= [ ~[x(t)=t]n(t) dr =0 Vn(

From the second equation we can conclude that

x(t)-t=0 - x(t)=a-|—%t2

On the other hand, the first equation yields
2x(t)+A(t)=0, A(0)=0, A(T)=0

Given the form of x(7), the first of these three conditions can be
integrated:

At)= dat— 64
3 1

Enforcing boundary conditions then yields b=0, a==¢ T’



Optimality conditions: Example 3 — initial conditions

Theorem: Let xeC 1,f e’ . If x(1) satisfies the initial value problem

x(t)=f(x(t),t)
x(0)=x,

then 1t also satisfies the “variational” equality
T
J X (0= F(x(0),0)] A(t) de+[x(0)= x| A(0)=0 Va(t)eC'((0,T])

and vice versa.
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Optimality conditions: Example 3 — initial conditions

Example: Consider the (again slightly boring) problem

t),t)= j x(t) dt
=

minx(t)eX (X<
such that  x(t

)=
x(0)=1

The constraint allows for only a single feasible point,

0
x(t)=1+=t

The Lagrangian 1s now defined as

Lix(O.A()=],
[ x(O)=a(0)[x(t)~t] dt—a (0)[x(0)~1]




Optimality conditions: Example 3 — initial conditions

Given L(x(t),i\(t))=f§x(t)—?\(t)[)’((t)—t]dt—A(O)[X(O)—l]

we can compute derivatives of the Lagrangian:

VL Lx(1),A(0).8,

o l”f§<x<t>+eg<t>>—A<t>['<>+eé<> Jdt A<o>[x< 0)+£(0)-1]
- | [ x ~t] de+(0)[x(0)-1]

i fﬁea<t>—A<t>[es<r>]dt—eA<o>§<o>

= E()-A(0)E(0)de-A(0)E (0)

= [1+A(0)J8(0) de=[A(0)E(0|L=A(0)E(0)

= [ [1+A(0) €(6) de-A(T)E(T)

T

207 V,L(x(t),A(t),n= [, ~[(t)=t]n(t) dt—=n(0)[x(0)~1]
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Optimality conditions: Example 3 — initial conditions

The optimality conditions are now

WV, L(x(1),A(t)),E)

V L{x(0),A(0),n)= ]| ~[x(6)=¢]n(t) dt~[x(0)~1]n(0) =0  Vn(t)

[ [+A(E(@d-NT)ET) =0 VE(@

From the second equation we can conclude that

X(t)—t=0
x(0)=1

In other words: Taking the derivative of the Lagrangian with respect
to the Lagrange multiplier gives us back the (initial value problem)
constraint, just like in the finite dimensional case.

Note: The only feasible point of this constraint 1s of course

1,
t)=1+—t
xl)=1+2
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Optimality conditions: Example 3 — initial conditions

The optimality conditions are now

WV, L(x(1),A(t)),E)

V L{x(0),A(0),n)= ]| ~[x(6)=¢]n(t) dt~[x(0)~1]n(0) =0  Vn(t)

[ [+A(E(@d-NT)ET) =0 VE(@

From the first equation we can conclude that

1+A(t)=0
A(T)=0

in much the same way as we could obtain the initial value problem for

x(1).

Note: This is a final value problem for the Lagrange multiplier! Its

solution 1s
A(t)=T—t



Optimality conditions: Example 4 — initial conditions

Note: If the objective function had been nonlinear, then the equation
for A(t) would contain x(¢) but still be linear in A(?).

Example: Consider the (again slightly boring) variant of the same

problem
: 1 )
min, e, f(x(t),6)=], 5 x(e) de
such that x(t)—t=0
x(0)=1
The constraint allows for only a single feasible point, x(t)= 1-|—%t2

The Lagrangian 1s now defined as
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Optimality conditions: Example 4 — initial conditions

Given
L(x()A(6)=f, 3 x(eF=A(0)x(6)-t] de=A(0)[x(0)-1]

the derivatives of the Lagrangian are now:

VL Lx(e)A ()€ )= [ [x(6)+A0]E () de=A(T)E(T)

T

VL L(x(t),A(6)),n)= ], ~[x(t)=tIn(t) dt=n(0)[x(0)—1]
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Optimality conditions: Example 4 — initial conditions

The optimality conditions are now
"'T

WV LIx(6),A(),E =] [x(6)+A(0)]E () d—A(T)E(T) =0 VE(t)

o T

o —1x(t)=t|n(t) dt=[x(0)=1]n(0) =0  ¥n(¢)

V L O,A(0),n)=,
From the second equation we can again conclude that

X(t)—t=0
x(0)=1

with solution

x(t)=1+=t
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Optimality conditions: Example 4 — initial conditions

The optimality conditions are now
T

WV LIx(6),A(0)),E )= [, [x(6)+A(O]E () de—A(T)E(T) =0 VE(¢)

o T

o —1x(t)=t|n(t) dt=[x(0)=1]n(0) =0  ¥n(¢)

'V, Lix(t)A(),n)=
From the first equation we can now conclude that

x(¢)+A(t)=0
A(T)=0

Note: This 1s a linear final value problem for the Lagrange multiplier.

Given the form of x(z), we can integrate the first of these equations:

1 3
Alt)=—t—=t"+

Together with the final condition, we obtain

A(t)=—t—lt3-|—T-|—lT3

213 5 5
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Optimality conditions: Preliminary summary

Summary so far: Consider the (not very interesting) case where the
constraints completely determine the solution, 1.e. without any control
variables:

min e f(x(0),0)=], Flx(t),t) de
such that X ( )

Then the optimality conditions read 1n “variational form”:

VY Lx(0)A(0),E/= [ [F, (x(0).0)+g, (x(e),0)+A(0)]E ¢) de—A(T)E(T)=0

T

V. Lx(e),Ae),n)=], ~[x(t)=g (x(t),0)In(t) dt—[x(0)=x,|n(0) =0
VE(t),n(t)
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Optimality conditions: Preliminary summary

Summary so far: Consider the (not very interesting) case where the
constraints completely determine the solution, 1.e. without any control
variables:

min e f(x(0),0)=], Flx(t),t) de
such that X ( )

Then the optimality conditions read in “strong” form:

x(t)—g(x(t),t)=0 AMt)=—F (x(t),t)—g,(x(t),t)
x(0)=x, A(T)=0

Note: Because x(¢) does not depend on the Lagrange multiplier, the
optimality conditions can be solved by first solving for x(z) as an initial
value problem from O to 7T and 1n a second step solving the final value
problem for A(¢) backward from T to O.
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Optimal control: Theory
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Optimality conditions for optimal control problems
Recap:

Let

e X be a space of time-dependent functions

Q be a space of control parameters, time dependent or not

f:X XQ—R be a continuous functional on X and Q

* [:XXQ—Y be a continuous operator on X mapping into a space Y
e g:X—Z_  beacontinuous operator on X mapping into a space Z

« h:Q—Z, bea continuous operator on ¢ mapping into a space Z
Then the problem
MIN, -, (e x,qe0 f(x(t),q)
such that L(x(t),q)=" Vie(t,t]
g(x(t) =+  Vtelt,t]
hiqg) =

217 1s called an optimal control problem.



Optimality conditions for optimal control problems

There are two important cases:
 The space of control parameters, Q, 1s a finite dimensional set

minx=x(t)eX,qu=lR" f(X(t),Q)

such that L(x(t),q)=0  Vtelt,t,]
g(x(t)) 20  Vtelt,t]
h(q) >()

 The space of control parameters, Q, consists of time dependent

functions

minx=x(t)eX,qu f( <

such that L(x(t),q(t))=0  Vtelt,t]
g(x(
h(q(
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The finite dimensional case

Consider the case of a finite dimensional set of control variables g:

rninx(t)eX,qelR” X t f F ’t’q
such that x(t)—g(x(t ) q)=0
x(0)=x,(q)
with )
g: XXRXR -V

Because the differential equation now depends on g, the feasible set 1s

no longer just a single point. Rather, for every g there 1s a feasible x(7)
if the ODE 1s solvable.

In this case, we have (all products are understood to be dot products):

=] F(x(t),t,q)de— A, x(t)-glx(t),t,q) ~A(0)[x(0)=x,(q)

L: XXR"'XV'->R



220

The finite dimensional case

Theorem: Under certain conditions on f,g the solution satisfies

The first two conditions can equivalently be written as

V. L(x'(t),q,A(t) E(t) dt=0, VEeX

]

(J (J
9
o N o oM

V.L(x(t),q, A (t)) n(t) dt=0, Vnev

Note: Since ¢ 1s finite dimensional, the following conditions are
equivalent:

V,L(x',q.A),0/=0, Vpe(R")'=R"
V,L(x,q,A)=0



The finite dimensional case

Corollary: Given the form of the Lagrangian,

=] F(x(t),t,q)-Alt)[ x(t)-g(x(t),t,q)d
=A(0)[x(0)=x,(q)]

the optimality conditions are equivalent to the following three sets of

equations:
x(t)=g(x(t),t,q), x(0)=x,(q)
A(t)==F (x(t),t,q)-g,(x(t),t.q), A(T)=0

0x,(q)

0q =0

f F,(x(t),t,q)+A(t) g, (x(t),t,q)dt+A(0)

Remark: These are called the primal, dual and control equations,
respectively.
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The finite dimensional case

The optimality conditions for the finite dimensional case are

x(t)=g(x(t),t,q), x(0)=x,(q)
;\(t)=—FX(X<t),I,Q)—gX(X<t>,t,Q), A(T)=O
0x,(q)

=0

Jo Falx0), 1, 01+200) gy {x(0), . q)de43(0) =
Note: The primal and dual equations are differential equations,
whereas the control equation 1s a (in general nonlinear) algebraic
equation. This should be enough to identify the two time-dependent
functions and the finite dimensional parameter.

However: Since the control equation determines ¢ for given primal and
dual variables, we can no longer integrate the first equation forward
and the second backward to solve the problem. Everything is coupled
now!



The finite dimensional case: An example

Example: Throw a ball from height /2 with horizontal velocity v _so

that 1t lands as close as possible from x=(/,0) after one time unit:

min{x(t),v(t)}EX,q={h,vX}EIR2 % X(t)_(é)) =%f§(x<t)_(é)) 5(t_1)dt
such that X (1)=v(t) x(0)=(2)
0 _[v,
v(t)= _1) v(o)=|"
Then:
L({x(t),v(t)},q,{A,(t),A,(t)})
= x(t)—((l))) 5(t—1)dt—<2\x,>’<(t)—v(t)>—<2\v,v(t)—(_01)>
oo Oy ol vio1[vs
- 1,(0)x01-[¢] |-, 0) oI




The finite dimensional case: An example

From the Lagrangian

VOLa, (A,
SN (é))c‘?t “1)de= A, k(1) v(t)>—<2\v v<t>—(_01)>
-1,(0)]x(0)- 2) A,0)v(0)-{%

we get the optimality conditions:
e Derivative with respect to x(7):

o

After integration by parts, we see that this 1s equivalent to

x(t)—

£.(t)5(t—1)dt - f;\ (t)dt=A,(0)E,(0)=0  VE(1)

é))é(t—l)Jr?\x(t):O A,(T)=0
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The finite dimensional case: An example

From the Lagrangian

L({x(e),v(t)},q,[A,(t),A,(0)))

AX
=%f§ (é))m —1)de—{A,, x(t)- V(t)>—<7\wV(t>_(_01
~A,(0)|x(0)- 2) —A,(0)[v(0)- ‘8"

we get the optimality conditions:
e Derivative with respect to v(7):

AOE (Odi= [ A0, (0d-0(0)E,(0)=0  VE,(1)

After integration by parts, we see that this 1s equivalent to

A()+A (t)=0  A(T)=0

\%



The finite dimensional case: An example

From the Lagrangian
L{{x(e),v(t)],q,(A,(t),A, (t)})

=%f§(x(t)—((1))) 5(t—1)dt—<2\x,)'<(t)— v(t)>—<2\v,\'/(t)—(_01)>

x(0)— 2)

we get the optimality conditions:

=A,(0)

 Derivative with respect to /\X( 1):

[ n.e) ) dt—n,(0)|x

This 1s equivalent to
(t)=v(t)=0 x(O)—(O)=O
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The finite dimensional case: An example

From the Lagrangian
L{{x(e),v(t)],q,(A,(t),A, (t)})

=;f,z(X(t)—((l)))25(t—1)dt—<?\x,5<<t>— V(t)>—<?\wV(t>‘(_01)>

2,0 x01{3] |2, 0] v(0)-{ ¥
h 0
we get the optimality conditions:
 Derivative with respect to /\v( 1):
! - 0 Vol |=
Jon 0] v(0)={ ) |l de=n(0)}v(0)=[*|]=0 Vn,(c)
This 1s equivalent to
. 0 V
vit)— =0 v(0)—[ x|=0
0-[0f=0 v}
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The finite dimensional case: An example

From the Lagrangian

L({x(e),v(t)},q,[A,(t),A,(0)))

AX
=%f§ (é))m —1)de—{A,, x(t)- V(t)>—<7\wV(t>_(_01
~A,(0)|x(0)- 2) —A,(0)[v(0)- ‘8"

we get the optimality conditions:
e Derivative with respect to the first control parameter A:

A, ,(0)=0

» Derivative with respect to the second control parameter v :

2\v,l(o)=0
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The finite dimensional case: An example

The complete set of optimality conditions is now as follows:

State equations: x(t)—v(t)=0 X(())_(O =0
(initial value problem) h
. 0 1%
v(t)— =0 v(0)—| x|=0
0= vio]!
Adjoint equations: x(t)—((l)))5(t—1)+2\x(t)=0 A (T)

(final value problem)

Control equations: A, ,(0)=0
(algebraic)



The finite dimensional case: An example

In this simple example, we can integrate the optimality conditions
in time:

State equations: x(t)-v(t)=0 x(O)—(O -0
(imitial value problem) h

()~ _01)=0 v(0-{)=0
Solution: v(t)=|"x

—t
vt
X(t)=
(t) h—lf

230



231

The finite dimensional case: An example

In this simple example, we can integrate the optimality conditions
in time:

1

0

A(t)+A,(t)=0  A(T)=0

Adjoint equations: x(t)—2]|6(t=1)+A,(t)=0 A(T)=0

(final value problem)

Solution: 1 1
A== [x(U-{ ) fore<1 (0= (1)-(0 ¢ fort<1
A(t)=0 fort>1 A (t)=0 fort>1
Using what we found for x(1) previously:
v.—1 v,—1
A (t)=— p 1 for t <1 A(t)=] 1|(t=1) fort<1
2 2
A(t)=0 fort>1 A(t)=0 fort>1



The finite dimensional case: An example

In the final step, we use the control equations:
Ax, 2 (O )= O
A, ,(0)=0

But we know that

v.—1
for t <1 A (t)=

A== 1
2

(t—1) fort<1

1
2

Consequently, the solution is given by
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The infinite dimensional case

Consider the case of a control variable g(7) that 1s a function (here, for
example, a function in L°):

min, L oergory FOX(EL6a(0)= ] F(x(0),6,q(0)d
such that x(t)—g(x(t),t,q(t))=0

with i
g: XXRXR =V

In this case, we have

L(x(t),q<t>,A<t)>=fZF<x<t>,t,q<t>>dt—<A,>'<<t>—g<x<t>,t,q<t))>
—A(0)[x(0)—x,(q(0))]

L: XXL*[0,T|)xV'=R
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The infinite dimensional case

Theorem: Under certain conditions on f,g the solution satisfies

V,L(x,q,X),E=0, VEeX
V,L(x',q"A),n/=0, Vnev
V,L(x'.,q"X),p/=0,  VpeL}([0,T]) =L*(0,T])

The first two conditions can equivalently be written as

]

V. L(x'(t),q,A(t) E(t) dt=0, VEeX

]

(J (J
o N o oM

V.L(x'(t),q, A (t) n(t) dt=0, VneV
Note: Since ¢ 1s 1s now a function, the third optimality condition is:

[TV LI (0,2 (0) ple) de=0, ¥ peL*([0,T)
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The infinite dimensional case

Corollary: Given the form of the Lagrangian,

L(x(t =] F(x(t),t,q(0)de= A, x(0)-g(x(t),t,q(t))
~A(0)[x(0)—x,(q(0))]

the optimality conditions are equivalent to the following three sets of
equations:

x(t)=g(x(t),t,q(t), x(0)=x,(q(0))
A(t)==F,(x(t),t,q(t)=g,(x(t),t,q(t)),  A(T)=0

F (x(t),t,q)+A(t)g,(x(t),t,q)=0, A(0) =0

Remark: These are again called the primal, dual and control
equations, respectively.
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The infinite dimensional case

The optimality conditions for the infinite dimensional case are

x(t)=g(x(t),t,q(t), x(0)=x,(q(0))

2.\(t)=_Fx<X<t)’t: Q(t))—gx<X(t),t,Q(t)), A(T)=O

(3X0(q)
0q

Note 1: The primal and dual equations are differential equations,
whereas the control equation is a (in general nonlinear) algebraic
equation that has to hold for all times between O and T. This should be
enough to 1dentify the three time-dependent functions.

=0

F (x(t),t,q)+A(t)g,(x(t),t,q)=0, A(0)

Note 2: Like for the finite dimensional case, all three equations are
coupled and can not be solved one after the other.
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The infinite dimensional case: An example

Example: Throw a ball from height 1. Use vertical thrusters so that the
altitude follows the path /+7¢°:

: 1T 2\ |2
M),y e x.g e (0,7]) Qfo x(e)=(1+) e

such that x(t)=v(t) x(0)=1
v(t)=—1+q(t) v(0)=0



The infinite dimensional case: An example

From the Lagrangian

we get the optimality conditions:
e Derivative with respect to x(7):

[ lx(-(1+0)E,

di— [ A (0F, (0)di-1 (0)E,(0)=0  VE,(t)

After integration by parts, we see that this 1s equivalent to

x(t)—=(1+)+A (£)=0 A (T)=0

X
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The infinite dimensional case: An example

From the Lagrangian

L({x(t),v(t)},q(t),{A,(t),A,(t)})
1f (x —(146)] de=[A,, % (6)=v(0) = (A, v(t) [ -1 +q(t)])

we get the optimality conditions:
e Derivative with respect to v(7):

T
O (0de- [ A0, (0di-2(0)E,(0)=0  VE, (1
After integration by parts, we see that this 1s equivalent to

A()+A (t)=0  A(T)=0

\%



The infinite dimensional case: An example

From the Lagrangian

L({x(t),v(t)],q(t),{A,(t),A,(t)])
1f X(6)=(148)] de=n,, k(0= v(t) = (A, v (6)~[~1+q(t)]
~A,(0)[x(0)=1]-A,(0)|v(0)-0]

\%

we get the optimality conditions:
 Derivative with respect to /\X( 1):

[ om0 )ldt—n,(0)[x(0)=1)=0  ¥n,(t)

This 1s equivalent to
x(1)=v(t)=0  x(0)=1=0
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The infinite dimensional case: An example

From the Lagrangian

L({x(t),v(t)},q(t),{A,(t),A,(t)})
=%f§(x(t)—(1-|—t2))2dt—<2\x,>'<(t)—V(t)>—<?\v,V(t)—[_1+Q(t)]>
~A,(0)[x(0)=1]-A,(0)|v(0)-0]

we get the optimality conditions:
 Derivative with respect to /\v( 1):

f n, | (=1+q(t))|dt—n,(0)v(0)-0}=0  Vn,(t)

This 1s equivalent to

v(t)=(=1+q(t)=0  v(0)=0
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The infinite dimensional case: An example

From the Lagrangian

L({x(t),v(t)},q(t),{A,(t),A,(t)})
1f (x —(146)] de=[A,, % (6)=v(0) = (A, v(t) [ -1 +q(t)])

we get the optimality conditions:
e Derivative with respect to the control function g(?):

f}\ f)dt=0 ¥ p(t)

This 1s equivalent to

A, (t)=0
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The infinite dimensional case: An example

The complete set of optimality conditions is now as follows:

State equations: x(t)—v(t)=0 x(0)—1=0
(initial value problem)
v(t)=(-1+q(t))=0  v(0)=0

Adjoint equations: (x(t)—(1+t2))+?\x(t)=0 A(T)=0
(final value problem)

A(t)+A (t)=0 A(T)=0
Control equation: A, (t)=0

(algebraic, time dependent)



The infinite dimensional case: An example

Let us use all these equations in turn:

Control equation: A, (t)=0
Adjoint equations: (x(t)—(1+t2))+?\x(t)=0 A(T)=0
A(t)+A (t)=0 A(T)=0
Solution: A,(t)=0
A (t)=0
x(t)=1+t°

Remark: This already implies that we can follow the desired trajectory
exactly!
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The infinite dimensional case: An example

Let us use all these equations in turn:
Now known: x(t)=1+¢
State equation: x(t)—v(t)=0 x(0)—1=0

v(t)=(=1+q(t)=0  v(0)=0

Solution: v(t)=2t
q(t)=v(t)+1=2+1=3

Conclusion: We need a vertical thrust of 3 to offset gravity and
achieve the desired trajectory!



Part 26

Optimal control with equality
constraints: Theory
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Equality constrained optimal control problems

Previously: So far, we have considered optimal control problems
where the only constraints were the ODE and initial conditions.

Now: Consider a problem where we also have equality constraints on
the state. Specifically, consider final time constraints:

min oo FXO,60(0)=] Flx(0,0,q(0)de
such that x(t)—g(x(t),t,q(t))=0

(x(T),q(T),T)=0

Constraints of this form typically occur if we want to be in a certain
state (e.g. location) at the end time and seek the minimal energy/

minimal cost path to get there.
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Equality constrained optimal control problems

Consider a problem where we also have equality constraints on the
state. Specifically, consider final time constraints:

min, s oeror F(0.6a(0)=] F(x(0),6,q(0)d
such that x(t)—g(x(t),t,q(t)=0

v (x(T),q(T),T)=0

Then:

T

L(x(t),q(t),A(t),v)=] F(x(t),t,q(t)dt—A,x(t)-g(x(t),t,q(t))
=A(0)[x(0)=x,(q(0))]=vy(x(T),q(T),T)

L: XXL*([0,T])XV'XR—R
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Equality constrained optimal control problems

Theorem: Under certain conditions the solution satisfies

V.L(x',q\Av),El=0, VEex
<VAL(X*,q*,2\*, v*),n>=0, Y nev
V.L(x',q A v),0/=0,  Vpel([0,T])'=L*([0,T))
VL L(X,q N v ),u=0,  VueR

Note 1: The last of these equations i1s simply

w(x(T),q(T),T)=0

Note 2: The first equation is now
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Equality constrained optimal control problems

Corollary: Given the form of the Lagrangian,

L(x(t),q<t>,2\<t>,v>=fzF<x<t>,t,q(t))dt—<2\,><<t>—g<x<t),t,q<t>>>
=A(0)x(0)—x,(q(0))|-vy (x(T),q(T), T)

the optimality conditions are equivalent to the following four sets of
equations:

x(t)=g(x(t),t,q(1)), x(0)=x,(q(0))

A(t)==F (x(t),t,q(t) - g,(x(t),t,q(t), A(T)==vy,(x(T),q(T),T)

F (0,60 A 0g (060120, A0 vy (x(r),q(T),T

w(x(T),q(T),T)=0

These are now called state equations, adjoint equation, control
equation, and transversality equation.
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Equality constrained optimal control problems

Example (“‘geodesics’’): Consider a mars rover. Given a force vector
q(t) then 1t will move with a velocity

x(t) = ¢(x(t)) qlt)

where the function ¢(x) indicates how “rough/smooth” the terrain is
at position x: if the terrain is smooth, then ¢ (x) is large; if it is rough,
then ¢(x) is small.

The goal 1s then to find a path from x to x with minimal energy. Let's

assume that the power necessary to create a force g(t) is equal to Ig(?)°.
Then the problem 1is:

. \ T Y
M, ex oiter’ (1) ?f. q(t)] dt
such that x(t)=p(x(t))q(t)
X( ' )=XA
x(T)=x,



Equality constrained optimal control problems

Example (“‘geodesics’’): For the problem

. 1T 2
MIN, ex qirer’(or) Efo q(t) de

such that x(t)=p(x(t))q(t)
x(0)=x,
x(T)=x,
the Lagrangian 1s given by
Lix(6),q(0),A(0,v) = = [, la(0) de=n, x(6)=p(x()qle)
—A(0)[x(0)=x, |-V [x(T)—x|

252



253

Equality constrained optimal control problems

Example (“‘geodesics’): The Lagrangian is given by

L{x(t),q(t),A(0),v) = 3 [, la(0) de= A, 5(0) - (x(e)q(c)
=A(0)[x(0)=x,|=v[x(T)=x|

The optimality conditions are then:

Mo+ V (x(0)[qlt)A(t)]=0 A(T)=—v

x(t)=(x(t))q(t)=0 x(0)=x,

In general, there 1s no trivial solution to this system.



Equality constrained optimal control problems

Example (“geodesics): Consider the simplest case, ¢(x)=1
Then the optimality conditions are:

At)=0 AT)=—v
Kt)-q)=0  x(0)=x,
q(t)+A=0
x(T)=x,

Alt)=—v q(t)=v
X(t)=Vt—|-XA V:(XB—XA)/T

That 1s, the rover moves at constant speed on a straight line and the
254  optimal value of the objective function is Evz I= Ix;—x ,|f /T
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Equality constrained optimal control problems

Example (‘“‘geodesics’’): Consider the more difficult case where the
rover can move twice as fast in the lower half plane than in the upper

half plane:
1 if x,>0

2 if x,<0
with H(y)=0 for y=0. Letx =(-2,1), x =(2,1)".

b(x)= =2 H(x,

Then the optimality conditions are:

0

MO s, 0)




Equality constrained optimal control problems

Example (“‘geodesics’’): Consider this difficult case. The conditions

. 0 _ =
A fa00I=0 AT

X(t)—(2—H(x,(t)))q(t)
q(t)+(2—H(x,(t)))A=0

X(T)=x,
have the following solution (note: the path 1s entirely in the upper half):

0 x(0)=x,

Alt)=—v q(t)=v
1
X(t)=Vt-|-XA Vz? g

The optimal objective function value is then

1 ,. 8
—Tr==
VAT
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Equality constrained optimal control problems

But careful: The conditions

. 0 _ =
A fa00I=0 AT

x(t)—=(2=H(x,(t)))q(t)
q(t)+(2—H (x,(t)))A=0
X(T)=x,

also have a solution of the form

0 x(0)=x,

—
0

b
0

= ]-

2
1 1

q(t)=const

(Details to be determined. We also have to specify in more detail what
1t means i1f we move along the line x =0, c.. the first equation above.)
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Part 277

Direct vs. indirect methods
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Direct vs. indirect methods

How do we solve general optimal control problems:

* Direct methods are based on the original problem formulation.
We can think of them as “discretize first, then optimize™.

e Indirect methods attempt to solve the optimality conditions.
We can think of them as “optimize first, then discretize”

Example: To find a minimum of f{x),
e Direct methods would find a sequence x , x, ... and would only

have to ensure that f(x] ) > f(x2 ), ...

I.e. it would only have to compare function values.

e Indirect methods would try to find a solution of the equation
J(x)=0.

I.e. we would have to compute derivatives of the objective function.



Direct vs. indirect methods

In practice, all methods in actual use are direct:

e For many realistic problems, the user-defined function F,g,... are
complicated and providing derivatives for the necessary conditions
1s not practical

* Good 1nitial estimates for the Lagrange multipliers are typically not
available

e Without good 1nitial estimates, indirect methods often just wander
off 1nto lala-land unless the problem is exceptionally stable

e If state inequalities are present, one needs to provide an a-priori
guess when the inequalities will be active. This 1s not practical.

Consequently: The optimality conditions derived so far are of mostly
theoretical interest in optimal control. They are of importance in PDE-
260 constrained optimization, however.



Part 28

Numerical solution of
optimal control problems with
direct methods
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The shooting method for realistic optimal control

Consider a problem with equality constraints on the state:
Specifically, consider final time constraints:

min,,_y o oeeiary FX(0,6(0)=] Fx(0),t,q(0)de
such that x(t)—g(x(t),t,q(t))=0

v (x(T),q(T),T)=0

Approach: We want to apply a (single) shooting method to it. To this
end, introduce a time mesh

0=t ,<t,<t,<..<t,=T

and a time step size k =t —t ..

We then apply one of the common time stepping methods to the
optimal control problem. (This step 1s called “discretization™.)



The shooting method for realistic optimal control

Consider a problem with equality constraints on the state:
Specifically, consider final time constraints:

min,,_y o oeeiary FX(0,6(0)=] Fx(0),t,q(0)de
such that x(t)—g(x(t),t,q(t))=0

v (x(T),q(T),T)=0

Example: Using the (overly trivial and low-order) forward Euler
method, we replace the original problem with the discretized form

Xn_l_xn—l qn_l_qnl)

N
. 0 N 0 Ny _
Min, .oy f(x,..,x,q ,..,q )—anl k F ; b, ;
n n—1
such that X kX —g(x" 7 (t),t_,,q" ' (t)=0
XO=X0(qO)

263 w(x",q",T)=0



The shooting method for realistic optimal control

The discretized problem now reads as:

N
. 0 N 0 N
min ooy f(x,.,x,q ,..,q )=Z _ k,F

-----

Note: Introducing y =(x0,q0,x1,q1, ...XN,qN)T this has the form

min, f(y)
such that ¢(y)=0

If x(z) has n_components and ¢g(t) has n components, then

(N+1)(n +n)
S i
264 yeR !

Nn +n +n
ceR ™ v
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The shooting method for realistic optimal control

The discretized problem now reads is equivalent to a large,
nonlinear optimization problem:

min, f(y)
such that c(y)="+

Its solution has to satisfy
OL_ofly) _\rdcly)_,

oy 0y 0y
9Ly =
oA

where L(y,A)=f(y)-A c(y).

Note: We have one Lagrange multiplier for each time step, but these
are all independent. Conversely, in the indirect approach, we would
have had Lagrange multipliers for each time step that satistfy a discrete
ODE and are therefore all coupled.

This 1s what makes the direct method more practical.



The shooting method for realistic optimal control

We can solve this problem using, for example, the SQP method:

(Viﬂyk)—mfvic(yk) -V,en)|lni]
_VyC(Yk)T 0 p?(
- _ Vyf<yk)_)\ifvyc<yk)
_g<)’k)

We will abbreviate this as

Wi —Adp| - _(vyf<yk>—A£vc<yk>
_Aiir 0 pi —c(yy)
where
W, = V§L<yk>2\k>
A, =V, cly)=-V,V,L(y.A)
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The shooting method for realistic optimal control

In each iteration, we have to solve the linear system

Vyf(Yk)_AifVCO’k)
—c(y,)

Wk _Ak
_Ak N

A
A
Pk

The matrix on the left has dimensions

(N+Y)(n,+n,)+Nn+n,+n, |X|(N+)(n+n,)+Nn,+n+n
| o w
=\ (N4+)(n Y +ng)+n, X (N4+)(n+)+ng)+n,,

Note: It 1s not uncommon to have 10-100 state variables, 1-10 control
variables, and 1,000-10,000 time steps. That means the matrix on the
left can easily be of size 10,000° to 1,000,000

That would be a very large and awkward system to solve in each
iteration!
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The shooting method for realistic optimal control

Conclusion so far: The SQP system

WkT —A||py Vyf(yk)_AI{VCO/k)
—A 0 P;i\ —c(yy)

1s very large.

However: The matrix on the left is also almost completely empty.
Remember that

W, = ViL(Yk’Ak)=Vif<yk)_Zi (Ak,i)viq'()/k)

A =V c
and that ' Y (Yk)
_ N Xn_I_Xn—l qn_l_qn—l
f(Y)—Zn=1knF 7 5tn) 7 )
n n—1
X —X n— n—
=g (X" )6, ,q" (1))
cly)=| " oo
X —x,(q)




The shooting method for realistic optimal control

Conclusion so far: The SQP system

WkT — A, pi - _ Vyf(yk)_AI{VC(yk)
—A 0 Pli\ —c(yy)

1s very large.

However: The matrix on the left is also almost completely empty. It
typically has a (block) structure of the form

N
N

Note: Such systems are not overly complicated to solve.

269



270

The multiple shooting method

Instead of using the single shooting method,

N
: 0 N 0 Ny _
MiN ooy f(x,..,x,q ,..,q )—anl k F

,,,,,

we can relax the formulation to obtain the multiple shooting method:

s,n—1 s,n—1

- DT L et
mlnxs’n,qs’n,n=0,...,NS,S=1...S s=1 n=1 S,n 2 JtS,n) 2

such that X X —g(x*" ()t ar, g (1)) =0, s=2...

X=X ” s=2...

X +x" q +q”1)

S



The multiple shooting method

The multiple shooting method: The SQP system has again the form
_ y T

Wk:r Al p; - _ Vyf(yk)_AkVC(yk)

Ay p,f —cly)

with now even more variables.

However: The matrix on the left is again also almost completely
empty. It typically has a (block) structure of the form

Note: Again, such systems are not overly complicated to solve. In
771 particular, this system can now also be solved in parallel.



Time stepping vs. SQP

Remark: A typical strategy of coupling time discretization and
nonlinear optimization 1s

e to start with a relatively small number of time steps
e do one or more SQP steps

* interpolate the current solution variables x", ¢" as well as the
Lagrange multipliers to a finer time mesh

e do some more SQP iterations and iterate this procedure

Advantages:

 While we are far away from the solution, the number of variables 1s
small and so every SQP step is fast

* Only as we get closer to the solution do iterations get expensive

 The degree of 1ll-posedness of problems typically increases with
smaller time steps. We can work with well-posed problems while

79 we need to take large steps, stabilizing the process.



Part 29

Optimization with
Partial Differential Equations

(PDE-constrained optimization)
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An example

Consider the following simple example:

The vertical deflection of a thin sheet (e.g. a membrane) clamped at the
boundary is described by the following Poisson equation:

force f(x)

Goal: Find the force f(x) so that the deflection u(x) matches a desired
deflection z(x)!
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An example

Mathematical description:

For simplicity, let us measure the distance between the actual state u(x)
and the desired state z(x) in the L* norm:

min, g o lu(x)=2(x)IP=3 [, lux)-2(F d

subjectto —Au(x)=f(x)  inQ

275  Note: We could have measured the distance in other norms as well.
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An example

Mathematical description:

For problems with partial differential equations, one typically needs to
be careful with how exactly the various function spaces are chosen.
Here:

. 1 1
M) f(x) §||u(x)—z(x)H2=§fQ [u(x)—z(x)]2 dx
subjectto —Au(x)=f(x)  in Q
u(x)=g(x) ondQ
Consequently:

* u(x) must be from H’
* f{x) must be from H"'
* 7(x) must be from L’

Note: If u(x) is in H' then the restriction of u(x) to the boundary is in
H]/Z.
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An example

Mathematical description:

In analogy to how we did this for the ODE case, we could then define
the Lagrangian corresponding to

min, 2 u(x)=2 (0 = [ [ulx)-20x)F d
subjectto —Au(x)=f(x) inQ (toholdin H )

u(x)=g(x) ondQ (toholdin H")

by setting



An example

Note:
By integrating by parts, we see that

Lu(x), F (), A )= Julx)-2 ()
= Au(x)= F (R, A (%) = u(X) =g (X), A ) o
[ulx)=2(x0)P~[~Bu(x)-f)]A(x)- [ [u(x)-g(x)]A(x)
u(x)=2(x) "~ Vu(x)} V A+ £ (1A ()
—J  nVu(x)A(x)+u(x)-g(x)]A(x)

Q

J
fQ

N = N =
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An example

Problem:

The optimality conditions that result from the Lagrangian




An example

Problem:

Consider just the first optimality condition:

[ ~Vulx)}VE(x)+f(x)E(x)
[ Vg +Hulx)-gx)E(X)=0 VE(eH ()

We would like to choose test functions in such a way that we can
conclude that

—Au(x)=f(x) in Q
u(x)=g(x) on 00

However: We can't do this in the same way as we did when we
analyzed the weak form of an ODE because our test functions are in
too small a space!

Remember: We wanted that u(x)=g(x) in H"?, so we would need to
hgo  test with functions in H™ ?, but we can only test in H"!



An example

Alternative mathematical description:

Define the (affine) function space

Hy=u(x)eH' (Q):u(x)],,=g(x)]
=[u(x)eL’(Q):Vu(x)eL(Q)u(x)], ;=g (x)

and rewrite the problem as

1
e =200
subjectto —Au(x)=f(x) inQ (toholdin H )

min u( x

Then we can define the Lagrangian as follows:

L(U(X),f(X),?\(X))=%|IU(X)—Z(X)H2—<—A u(X)=f (x),A(%)

L:H XL'XH;~R
281



An example

Alternative mathematical description:

The optimality conditions that result from this formulation are

J o=V ule VEX)+fx)E(

=] n-Vu(x)&(x)=0 VE(x)eH, (Q)
| [u(x)=z(x)]n(x)=Vn(x)- VA (x)

=,V n(x)a(x)=0 Vn(x)EH,(Q)
| p(x)A(x)=0 Y p(x)EL(Q)

Note: The test functions in the first and second optimality condition
now have zero boundary values. This cancels the remaining boundary
282 1ntegrals.
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An example

Alternative mathematical description:

In “strong form” these optimality conditions are equivalent to
-Au=f
—AA=u(x)—z(x)

[ p0Ax)=0  Vp(x)eL’(Q)

Note 1: The last condition does not necessarily imply that the Lagrange
multiplier is zero because we only test with functions in L, not H”.

Note 2: Consequently, we can't be sure that the optimal u equals z. This
makes sense because z is in L° but u in H'. Furthermore, we have
required f to be from L°, making u even smoother than H'.

Note 3: We could have avoided this problem by allowing fto be in H”.



Solving PDE-constrained problems

The optimality conditions then read:
Find functions u(x),f{x),A(x) so that

[ ~Vulx)VE(x)+f(x)E(x)=0 VE(x)eH)(Q)
[ [u(x)=z(x)]n(x)=Vn(x)}-VA(x)=0 Vn(x)eH)(Q)
| p(x)A(x)=0 Y p(x)eLX(Q)

We can approximate solutions by seeking uh(x),fh(x),/\h(x) In finite
dimensional subspaces. For example:

. uhth,g={vhepl(T):vh|5Q=g}CVg=H:7

‘ fhEHh={phEDPO<T)}CH=L2

il
. ° Ahevh,0={thP1<T):vh|aQ=O}CVO_HO



Solving PDE-constrained problems

The discrete optimality conditions in weak form read:
Find functions u (x), fh(x),/\ (x) so that

| ~Vu,(x)VE (x)+f,(x)&(x)=0 VE(X)EV,,
| [uy(x)=2(x)]n,(x)= V m,(x)-V &, (x)=0 V. (x)EV,
| pu(x)4,(x)=0 Y p,(x)eH,

Note: As before, the last condition does not imply that A ,(x)=0. Rather,

it only means that on every cell, the average of A ,(x) has to be zero!
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Solving PDE-constrained problems

The discrete optimality conditions in weak form read:
Find functions u (x), fh(x),/\ (x) so that

| ~Vu,(x)VE (x)+f,(x)&(x)=0 VE(X)EV,,
| [uy(x)=2(x)]n,(x)= V m,(x)-V &, (x)=0 V. (x)EV,
| pu(x)4,(x)=0 Y p,(x)eH,

By choosing a basis for the finite dimensional spaces, we arrive at the
linear system

A Q 0 M 0 A
M 0 0 0 Q
0 0 A Q 0

T

= T C
1|
O N O
)
= T C
1|
O O N

A
QT



Solving PDE-constrained problems

We now have to solve the following linear system:

T

M 0 A
0 0 Q
AQ 0

> T C
I
o O N

e This system may be very large: On a 100x100x100 grid in 3d, the
system has 3 million unknowns

e The matrix 1s symmetric
e The matrix 1s indefinite
e The matrix 1s sparse

Problem 1: Large linear systems with these properties are typically
difficult to solve unless we have good preconditioners.

Problem 2: Good preconditioners are typically only available for
ng7 discretized versions of the underlying PDE (i.e. for the matrices A, A").
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Solving PDE-constrained problems

We now have to solve the following linear system:

MOATUZ
0 0 Q'||[FIF|0
A Q 0/lAl |0

One solution: Use block elimination

AU+QF=0 = U=-A"'QF
MU+A'A=Z = A=A (Z-MU)=A" (Z+MA 'QF)
Q' A=0 > QA MAQF=-QA'Z

S
Definition: S is called the Schur complement of the system matrix with
respect to the FF block.

Strategy: Solve the last equation for F' and the solve the other two
equations in turn.
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Solving PDE-constrained problems

We now have to solve the following sequence of linear systems:

QA MAQF=-Q A 'Z

S

AU=-QF
A" A=Z-MU
Properties:

S 1s symmetric and positive definite.

We can thus apply the Conjugate Gradient (CG) method
* The entries of S are typically not known explicitly
e The matrix S 1s dense

* By applying matrices term-by-term, the only solvers we need are
ones for the underlying PDE. Good solvers for these are available.

Remaining problem: We do not have good preconditioners for S.



An nonlinear example

Consider the following not-quite-so-simple example:

At low velocities, fluid flow 1s reasonably accurately described by the
time independent Navier-Stokes equations

u-Vu-vAu+V p=0 in 0
V.u =0 in ()
u(x)=g(x) onI,coQ

Observation: For certain “electro/magnetostrictive” materials, the
viscosity depends on the electric/magnetic field. For example

v(x)=v.+v,I(x), where I(x)=|E(x)|" or I(x)=|B(x)|'

290 Goal: Control flow properties by controlling the viscosity!



A nonlinear example

Mathematical description:

Let us assume that the goal 1s to control the velocity at the outflow and
that we can control the intensity /(x) in a part (wC{) of the domain:

: 1
M, yert (), plxler’(@), el (w) EHUM_Z(X) I,

subjectto u-Vu—V-(vy+v,I(x))Vu+V p=0 in Q
Vau =0 in

Note: Boundary conditions for u(x) have been put into the function
space again!




A nonlinear example

Mathematical description:
For this problem,

2
I,

. 1
MM, yert (), p(xler’(@), 1el(w) EHU(X)_Z(X)
subjectto u-Vu—V:(vy+v,I(x))Vu+V p=0 in 0
Vau =0 in

the Lagrangian would be chosen as
Lu(x),p(x),I(x),A,(x),A,(x))
1
=2lu(x)-z(x)lE

—(uVu,A)=((vo+v, I(x))Vu,Va,)-(p,VA,)
~(V-u,a))
292



A nonlinear example

Mathematical description: From the Lagrangian
L(u(x),p(x),1(x),A,(x),A,(x)
=2 lu(x)-2(x)[;,
~(u-Vu,d) = ((vg+tvi Ix)Vu,Va,)=(p,Va,)~(Vu,a,)

we get the optimality conditions. Taking derivatives with respect to the
dual (adjoint) variables Au(x ), Ap(x ) yields

u-Vu-V-(vy+v,I(x))Vu+V p=0
V-u=0
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A nonlinear example

Mathematical description: From the Lagrangian
L(u(x),p(x),1(x),A,(x),A,(x)
=2 lu(x)-2(x)[;,
~(u-Vu,d) = ((vg+tvi Ix)Vu,Va,)=(p,Va,)~(Vu,a,)

we get the optimality conditions. Taking derivatives with respect to the
primal (state) variables u(x), p(x) yields

(Vu)"A,~V(u®d,)-V-{v, v, I(x))V 2, -V A, =(u=2)3, (¥
VA =0

Using the u(x) 1s divergence free, we can rewrite this as
(~u) VA=V vty I(x)) VA +(Vu) A=V A =(u=2)5, (x)

204 VA0



A nonlinear example

Mathematical description: From the Lagrangian
L(u(x),p(x),1(x),A,(x),A,(x)
=2 lu(x)-2(x)[;,
~(u-Vu,d) = ((vg+tvi Ix)Vu,Va,)=(p,Va,)~(Vu,a,)

we get the optimality conditions. Taking derivatives with respect to the
control variables yields the control equation:

wawV?\up:O Vp(x)eL”
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A nonlinear example

The optimality conditions all together are now:
(~u) VA=V (vt v I(x) VA+(Vu) 4, -V A, =(u=2)5, ()
V-, =0

VuVa, =0

uVu-V-(vy+v,I(x))Vu+V p=0
V-u=0

Note 1: The advection term in the state equation transports momentum
along with the velocity u(x). On the other hand, advection in the
adjoint equation goes in the opposite direction, -u(x)!
This 1s just like the time direction for ODEs!

206 Note 2: This is still a nonlinear system of coupled PDEs.



A nonlinear example

Solving the optimality conditions:

The optimality conditions form a set of 5 partial differential equations
that we can write as follows:

F<{U9P’I’Au’Ap})=O

More specifically:

L({u,p,I,A,,A,])
L({u,p,I1,A,,7,))

))u)p

F<{u’p91:Au:Ap})= LI({U,p I,A,A })

sty Bp

LAU({qu I,A,A,})

y Loy By Bp

L, (lu,p,LAA )
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A nonlinear example

Solving the optimality conditions:

The optimality conditions form a set of 5 partial differential equations
that we can write as follows:

su
5p(k)
F'({u<k), p<k),1(k),?\£lk),?\§,k)}> 5I(k) =—F({u(k),p(k), I(k>,2\£lk),?\§)k>})
5A%
5?\(k)
p

Note: Because F=L', the matrix operator F'=L" 1s symmetric.
298



A nonlinear example

The Newton system that we need to solve in each step has the form:
(—u")-V oa; +(=ou") VA,
—V-(v151<k>)VAf,k>—V-(v0+v I<k))V62\k
+(Vu) s a1 +(Vsu™) A" V(SA b=
VéA(k)=_v2\(k)

Vu"'"-Veal| +Veu''Var| =—Vu"-Va¥|

"V su+ 64V
VTN =Ty 0V 54V
V‘5u(k)=—v-u(k)

Note: This nasty system really 1s linear in the updates and symmetric.
299 Trust me! ©
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Solving PDE-constrained problems

Practical aspects of PDE-constrained problems:

* They are very expensive
- the number of variables is often very large
- the degree of coupling 1s often much higher than for optimal

control problems

« PDE-constrained problems are almost always 1ll-posed by
themselves

e Discretized PDE-constrained problems are well-posed but 1ill-
conditioned

 Strategies to deal with many difficulties (e.g. complex state
equations, solver issues, inequalities) remain the subject of current
research



Part 30

Further Applications I:

Parameter Estimation
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Motivation

Simulation in engineering and sciences follows the following
sequence:
* We model the process, 1.e. we derive equations that describe how
the system behaves in response to external forces.
The equations may be algebraic, differential, integral, partial-
differential, ..., and typically contain system parameters

* Given the model and parameter values, we can numerically simulate
the system on a computer

 If we know how to simulate, we can optimize

Problem: Someone will have to give us values for these system/
material parameters at one point. Determining these values 1s done 1n
the field of parameter estimation.

It the model 1s a PDE, parameter estimation problems are often called
302 inverse problems.



Idea

The basic idea of parameter estimation:

Let us assume that
e the state of a system 1s described by a variable y
e there are a number of system parameters p

e we have a model that can predict the state y if we know p:

f(y;p)=0

 a function A(y,;p) that extracts from state and parameters the part we
can measure

303



Examples of parameter estimation problems

Example 1: Determining
the viscosity of a fluid.

State variable: y={u(x) ,p(X)}
€Y=H XL’

Parameters: ~ p={v|€P=R

Model: The Navier-Stokes equations

u-Vu-vAu+Vp
fly;p)= U =0
u(x)—g(x)

Measurements: For example velocities or pressures at individual points

304 h(y; p)=[u(x,), o sti(xy ), p(X,), e PRy )| 1Y XPoR™



Examples of parameter estimation problems

Example 2: Determining earth gravity and
the friction coefficient for a body falling in air

State variable: y:{z(t)}EY=C\ ([+,T])

Parameters:  p=|\g,C|€P= R’

Model: Newton's second law with a model for

air friction ) (t)—( ey (t)V)
fy;p)= f(.) =

Measurements: The distance the body has fallen at given times

305 h(}’;P)=(x(t\),...,x(tN))T:YXP—>IRN



Abstract formulation

Approach: Let us assume that we have measured a vector of values z.
Our goal 1s to find a set of parameters p so that our model f(y;p)=0
predicts a state for which the predicted measurements h(y;p) are as
close as possible to the actual measurements z:

. 1
min,,  Hlhly;p)-f
subjectto f(y;p)=0

This problem gives rise to the Lagrangian

L(y,p,?\)=%|\h(y;p)—ZHZ—?\Tf(y;p)

306
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Abstract formulation

Approach: Let us assume that we have measured a vector of values z.
Our goal 1s to find a set of parameters p so that our model f(y;p)=0
predicts a state for which the predicted measurements h(y;p) are as
close as possible to the actual measurements z.

From the Lagrangian

Lly,pN=vlIh(y; =2 ~\"F(y;p)

we obtain the optimality conditions:
fly;p)=
V,f(y;p)'A=(h(y; p)=2)V,h(y;p)

(h(y;p)-2)V,h(y;p)-V,f(y;p)A="
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Solving parameter estimation problems

Approach: The optimality conditions

(h(y;p)=2)V h(y;p)=V fly;p) a=0
(h(y;p)=2)V h(y;p)=V f(y;p)A=0
f(y;p)=0

can be solved using a Newton method:

0
H 0 p, ==L"(y,, Po )

5A,
V,h'V h+(h-z)V h V,h'V h+(h-2)V, =V f'A V f'

H=V h'V, h+(h-2)V,h=V',f'A V'V, h+(h—2)V,, b=V, f'A V[
V,f V.f 0

Note: The Newton matrix on the left 1s symmetric, but indefinite.



Practical considerations 1

Remark 1:

If we can assume that the model 1s correct and that our measurements
are reasonably accurate, then we can expect that:

* We should be able to find a parameter p so that the predicted
measurements A(y,p) are close to the actual measurements z

 In other words: At the solution of the parameter estimation problem,

h(y; p)-z

1s small!

Corollary: If we omit all terms from the Newton matrix that are
proportional to the “misfit” (h-z), we are only going to make a small
error 1in the Newton direction.
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Practical considerations 2

Remark 2: We can think of the model f(y;p)=0 as follows:
e For every parameter value p there 1s a state y that results

 In other words, for every p, f{.;p)=0 defines an implicit function
y=y
pP

e A slight change in parameter values results in a change 1n state:

_ . o o Oflysp) o Ofly;p)
0=f(y+dy;p+op)~fly;p)+ oy r )

=V, f(y;p)oy+V,fly;p)op
Or, written differently:

V,fly;p)oy==V fly;p)op

oy+ p

Note: For the problem to be well-posed, we must have that V y fly;p)
310 is an invertible matrix/operator.
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Practical considerations 2

Consequence:

Among the optimality conditions, we had the equation
V,f(y;p) a=(h(y; p)=2)V h(y;p)

This implies

[AI<IV, £ (s p) 1 IV h(y; pI (IR(y; p)=2l

Corollary 1: The Lagrange multiplier is small if we can fit data well,
ie.if |[h(y;p)—z| issmall!

Corollary 2: If we omit all terms from the Newton matrix that contain
the Lagrange multiplier, we are only going to make a small error in the
Newton direction.
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Practical considerations — conclusions

Practical approach: The optimality conditions

(h(y;p)=2)V,h(y;p)=V,f(y;p) A=
(h(y;p)=2)V h(y;p)=V f(y;p)A="
fly;p)="

can be solved using a variant of Newton's method called the Gauss-
Newton method.

V.i'V,h Vi Voh Vfilsy,
V,i'V,h Vi’V V|6 p, ==L (Y Pl
V,f V. f +]18A,

Note: The Newton matrix on the left 1s symmetric, but still indefinite.




Practical considerations — conclusions

Practical approach: In many cases, our measurements do not directly
depend on the parameters p (after all, we need to solve a parameter

estimation problem to determine them since they are not directly
measurable!). Then

V., h=0

and the Gauss-Newton method reads:

VyhTVyh 0 VyfT 0 Yy
0 0 V,f"sp, =L Y Pod
V.f V. f 0 [lsa,

y

Let us define A:Vyf, ]:Vyh, Q:thl?l)én

J'J 0 AT\sy, L,
0 0 Q'|lop|=|L,
A Q 0 5A, L

A

313
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Practical considerations — conclusions

Practical approach: The linear system that needs to be solved in each
step of the Gauss-Newton method reads:

J'J o A\syy L,
Co QepfET L,
A Q . 6Ak L)\

Recall: We have assumed that the model 1s locally invertible, i.e.

A exists.

Consequence: Using a block elimination as discussed in the section on
PDE-constrained optimization, this system can be solved in three steps:

Q'A"JJATQ §p=..
S

Aoy-=..

A" SA =
We know how to invert all matrices here. This system 1s much simpler
than what we would have gotten for the full Newton method.




Part 31
Further Applications II:

Optimization Problems with
Optimization Problems as Constraints

Optimal Experimental Design
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The parameter estimation problem

We have formulated the parameter estimation problem as follows:

Let us assume that we have measured a vector of values z. Our goal 1s
to find a set of parameters p so that our model f(y;p)=0 predicts a state
for which the predicted measurements A(y;p) are as close as possible to
the actual measurements z:

. 1
min,,  Hhly:p)-f
subjectto f(y;p)=0

Observation: For a given set of measurements z, we get a set of
parameters p that solve this optimization problem.

Question: How does p depend on z? In other words, if we have a little
bit of measurement noise, how does p respond?



The parameter estimation problem

Answer 1:
For a given vector z, p satisfies

(h(y;p)=2)V,h(y;p)=V,f(y;p) A=0
(h(y;p)=2)V h(y;p)=V fly;p)A=
f(y;p)=0

or in short for x=(y,p,A) :

L (x;z)=0

Here, we have made the dependence of L on z explicit:

1
L(x;Z)=L(y,p,A;z)=5Hh(y;p)—ZH2—?\Tf(y;p)
317



The parameter estimation problem

Answer 2:

For a given set of measurements z+0z, we will estimate a parameter
p+0p that satisfies

(h(y+6y;p+dp)-(z+82))V h(y+6y; p+dp)-..=
(h(y+6y;p+dp)-(z+82))V h(y+dy; p+dp)-..=
fly+dy;ptop)=:

or in short for x+§x=(y+6y,p+6p,A+5A) :

L(x+d8x;z+8z)="
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The parameter estimation problem

Consequence:
Measurement error 0z and resulting parameter errors Op are related to
each other as

L(x+8x;z+62)=0
If measurement errors are small, then we can do a Taylor expansion:
L(x;z)+L, (x;z)6x+L (x;z)6z+..=0

Using the optimality conditions for x and neglecting higher order terms
we get:

L (x;z)0x=—L (x;2)0z2



The parameter estimation problem

Consequence:
Measurement error 0z and resulting parameter errors Op are related to
each other to first order as

L (x;z)6x=—L (x;2)0z2

The matrix on the left 1s again the nasty looking Newton matrix. If we
make the same assumptions/approximations as before, we get:

T

JTJOAT5y iTs,
0 0 Q|6p~| 0
A Q 0]lsa 0

where

A=V f, J=V h, Q=V,f
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The parameter estimation problem

Consequence:

Measurement error 0z and resulting parameter errors Op are related to
each other to first order as

L (x;z)6x=—L (x;2)0z2
After block elimination as usual, we find that
QA JTJA'QSsp = -Q A 'J &2
Or shorter: S §p = —X' 57
Note1l: § = —XTX

Note 2: The matrices S, X typically depend on x.
321



Optimal experimental design

Motivation:

We now know that a measurement error 0z results in parameter errors
Op related to each other by

S6p = -X 8z

Ideally, we would want the matrix S to be as “large” as possible so that
the errors Op are as “small” as possible!

Observation: All parts of the equation depend on how we measure,
e.g. where we measure, what we measure, etc.
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Optimal experimental design — an example

An example!

Question: How long is this train and how far is it away from the closest
323 point to the tracks?



Optimal experimental design — an example

An example!

Answer: Measure the distance to the tracks and the angles!
324



325

Optimal experimental design — an example

View from the top:

Train of length L
L=dtan(x+0)—x
x=d tan

Observer position

Answer: Measure the distance to the tracks and the angles!



Optimal experimental design — an example

Given a distance d to the tracks, we have the following:
e State and parameter variables are

arctan E
fy;p)=[%|- =0
9 arctan <L+X) — arctan| —
d d

e The measurement operator is given by

X

h(y;p)= p

Note: The distance d to the tracks is the design parameter. We can
326 choose it as we see fit!
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Optimal experimental design — an example

After some algebra, we find:

Measurement errors and resulting errors in our parameter estimates are
related by

g|0L |- x |02,
O X 0Z,
where
\ )
. v\Y Y Y+ Y Y
|y, (L+x) oy (LX) | gy (ERX) )y X
d , d |+ . Y Y
\ N \ \ N \ N \
PN A PR e N8 P (OWO8 e e
dv d d dV d d
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Optimal experimental design — an example

After some algebra, we find:

Measurement errors and resulting errors in our parameter estimates are
related by

S oL —x 02z,
O X 0Z,
Note: S=5S(d), o6p= gL =6p(d), X=X (d) aswellas p=p(d)
X

Goal: Given measurement error, we want the smallest possible error in
parameter estimates. In other words, we have to maximize S

Approach:
* We have to define what it means to make S “large”
 We can then choose d so as to maximize S.



Approach

Definition:
We can now define the 0ptim2>1<1 experimental design problem as follows
for a scalar function ¢(S):R"”""—=R:

max, ¢(S(y,p;d))
where y,q solves the parameter estimation problem:

. 1
min, EHh(y;p;d)—sz
subject to f(y; p;d)=0

In other words: We need to solve an optimization problem with a
constraint that one of the variables solves another optimization
problem!
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Formulation

Mathematical formulation:

We can now define the 0ptim2>1<1 experimental design problem as follows
for a scalar function ¢(S):R"”""—=R:

max, . d(S)

subjectto (h(y; p)—z)V,h(y;p;d)-V,f(y;p;d)'A=0
(h(y;p)-2)V,h(y; p;d)-V,f(y;p;d) A=0
f(y;p;d)=0

=QTA—T JTJA—lQ

330 second order optimality conditions are satisfied



Formulation

Mathematical formulation:
Alternatively, we can resolve a few of the constraints already:

max, . SV, IV, fI7 IV, IV IV TV,f)

subjectto (h(y; p)—z)V, h(y;p;d)=V,f(y;p;d) A=0
(h(y;p)-2)V h(y; p;d)=V f(y;p;d) A=0
f(y;p;d)=0

Note 1: The first three constraints are the first order necessary
conditions of the parameter estimation problem.

Note 2: The second order necessary condition could be added by
331 requiring that the projected Hessian be positive semidefinite.



Solution

Solution:
We can solve the optimal experimental design problem

max, - SV, IV [V, [V,hIV,TV,f)

subjectto (h(y; p)=z)V,h(y;p;d)=V,f(y;p;d) A=0
(h(y;p)-2)V, h(y; p;d)-V,f(y;p;d) A=0
f(y;p;d)=0

VIV IV RV RV V120
by introducing a Lagrangian
L(d’Y:p:A:ULUz,Us)
= oV, IV, IV, V0V IV, f])
—uy|(h(y;p)=2)V h(y;p;d)=V, fly; p;d) A
—iy\(h(y;p)=2)V,h(y;p;d)=V f(y;p;d) A|-msf(y;p;d)

332 and then proceeding as usual.
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Choices for the objective function

The optimal experimental design problem was defined as follows:

max, ¢(S(y,p;d))
where y, p solves the parameter estimation problem:

. 1
min, . >y p;d)=2f
subject to f(y; p;d)=0

In other words: Make the matrix § as large as possible so that for a
given measurement error Oz the resulting parameter errors Op are as
small as possible.

Question: How should we choose the function ¢(S):R" "= R?



Choices for the objective function

Question: How should we choose the function ¢(S):R"™""—R?

Choices: Different objective functions are typically denotes by letters
in optimal experimental design:

* D-criterion: ¢(S)=det S

» T-criterion: $(S)=trace S

* A-criterion: b(S)=—trace S~

e E-criterion: ¢(S)=min eigenvalue(S)

e G-criterion, C-criterion, V-criterion, I-criterion, ...
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Further Applications III:

Optimization Problems with
Optimization Problems as Constraints

Multiobjective Optimization
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Motivation

Problem: Oftentimes we have several objectives. For example:

 We want to design a plane that 1s as fuel efficient as possible but
also as stable as possible.

 We want to find a trajectory from Earth to Pluto that 1s as cheap as
possible (1.e. we need to lift the least amount of fuel into space) but
also takes the least amount of time to get there.

Approach 1: If we have a hard limit on one or the other goal, we can
formulate 1t as a constraint.

Approach 2: We can choose an objective function that is a linear
combination of our goals.

Approach 3: We can state limits on how much we want to compromise
336 Onone goal for another.
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Multiobjective optimization

Example: Let the problem be to find a control g so that
Fy(y,q)—min
F.(y,q)—min

subject to constraints

Approach 1: If we have a hard limit on one or the other goal, we can
formulate it as a constraint. For example, F' 1s more important to us,

and we are willing to accept any control ¢ so that F (y,q)<F*. Then:

miny,q Fl(y:q)

subjectto  f(y,q)=0
g(y,q)=0
F)y,q)<F



Multiobjective optimization

Approach 2: We can choose an objective function that is a linear
combination of our goals. For example:

min,,  SE\(y,q+(1-5)F,(y,q
subjectto  f(y,q)=0

g(y,q)=0
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Multiobjective optimization

Approach 3: We can state limits on how much we want to compromise
on one goal for another.

Example: We want to find a control g so that F , 1s minimized, but we

are only willing to compromise at most 10% of goal F.

Let y,q be the optimizer of F :

min, .,  Fy(¥,q)
subjectto  f(y,G)=0
g(y,4)=0
Then find y,q so that

miny,q FZ(.y:q)



Multiobjective optimization

Joint formulation:
We can write this problem as one optimization problem. In words, it
then reads as follows:

min, 5 4 Fy(y,q)
subjectto f(y,q)=0
( q)=0
Fi(y,q)<1.1F,(y,q)
where §,q solves min,,  F,(},q)
subjectto f(¥,q)=0
g(y,4)=0
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Joint formulation:

Multiobjective optimization

We can write this problem as one optimization problem.
Mathematically, we can write it using the optimality conditions:

min_& . . ;.
Y.q,¥.q,A 1
subject to

F,(y,q)

f(y,q)=0

g(y,q)=0
V,E,(5,0)-NV,[(7,9)-4"V,g(7,0)=0
V.F.(7,9-A"V. f(3,9)-02"V.g(3,§)=0
f(9,4)=0

g($,4)=0

F.(y,q)<1.1F(y,q)



Part 33
Further Applications IV:

Stochastic and Robust Optimization
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Motivation

Problem: In many optimization applications, we have material/system
parameters that are not known exactly, or external forces that are
unpredictable. We want to take this into account when optimizing.

Example 1: We want to design an air plane that is as efficient as
possible, but we only know that the viscosity of air at 10km altitude 1s

2 2
1.1.10‘4fL <y < 1.2-10“‘fL

S S
depending on the prevailing temperature.

Example 2: We want to compute the trajectory for a rocket that takes
the least amount of fuel. But this trajectory will depend on current wind
conditions which we don't know exactly.

Example: We want to optimally produce an oil field but we have only

143 incomplete knowledge of the physical structure of the o1l reservorr.



Some preliminaries

Definition: Let p be an uncertain parameter (such as the viscosity, the
wind field, the o1l reservoir) and let

P(p)

be a probability density for this parameter.

Let F(p) be a function of p. Then we call

E[F] = | F(p)P(p)dp

the expectation value of F' and

o[F] = {[ (F(p)—E[F]P(p) dp

the standard deviation of F under P.
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Some preliminaries

Example 1 (Viscosity): If we know that

2
L0 <) < 1210
S S
then a reasonable choice would be
f
s it < <12 10‘4ft
Plv) =" g 5 S
(O otherwise

Example 2 (Rocket in a wind field): Close to the surface, a reasonable
model could be
td§

1 B 2
p 7)) = i (10mph)
9=
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Some preliminaries

Practical approach: In practice, computing integrals like

E[F] = | F(p)P(p)dp

1s difficult if the number of variables 1n p 1s large.

In that case, we can choose a uniformly distributed sample /p / and

approximate

BIF] ~ X, F(p)P(p)

Alternatively, we can choose samples {p / based on the probability

distribution P(p) and approximate
1 «N
E[F] ~ Nzlgl F(pl)
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Stochastic optimization

The state equation: Let us assume that state variables y, control
variables g and system parameters p are related by

f(y,q; p)=0

and that we have additional constraints of the form

g(y,q)=0

Deterministic optimization: If we knew that the parameters p then the
optimization problem would have the form

min, . F(y,q)
subject to f(y,q;p)=0
g(y,q)=0

Since we have assumed that we know p this problem can be
347 deterministically solved to find an optimal control g.
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Stochastic optimization

Stochastic optimization: In reality, me may not know p exactly but
only a probability distribution function P(p). In this case, we can pose
several versions of a stochastic problem.

Version 1: Average control — optimize the average cost over all
possible values p by finding a single control ¢ so that:

min, . E[F(y,,q)
subject to f(y,,q;p)=0
g(y,,q)=0

Practical implementation: Draw samples { p, } from P(p) and solve

. 1 oV

mlnyi,q Nzth(.yi’qi)

subjectto f(y.,q;p.)=0 i=1,..,N
g(y.,q)=0 i=1,...,N
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Stochastic optimization

Stochastic optimization: In reality, me may not know p exactly but
only a probability distribution function P(p). In this case, we can pose
several versions of a stochastic problem.

Version 2a: Risk averse control — optimize average cost plus some
safety factor over all possible values p:

min, , E[F(y,.q)l+aolF(y, q]
subject to f(yp,q;P)=0

g(y,,q)>0
Practical implementation: Draw saplples { p, } from P(p) and solve
21
. I oV X N 1 o¥
mlnyi,q NZth(Yi’qi) \/_N Zi=1 F(yl:CIl)_NZ]:lF(yjaq])
\ J

subjectto f(y,q;p.)=0 i=1,..,N
g(y,q)=0  i=1..,N



350

Stochastic optimization

Stochastic optimization: In reality, me may not know p exactly but
only a probability distribution function P(p). In this case, we can pose
several versions of a stochastic problem.

Version 2b: Risky control — optimize average cost minus some safety
factor over all possible values p:

min, ,  E[F(y,.q)l-ao[F(y, q]
subject to f(yp,q;P)=0
g(y,,q)=0

Practical implementation: Draw samples { p, } from P(p) and solve

. 1 : L
mlnyi’q Zl 1 yl’ql \/N Zi=1 F(yl’ql>_ﬁzj=1F(yJ’qJ)

\ )

subjectto f(y.,q,;p,)=0 i=1,.. N
g(Yqui)—O i=13°°°)N

2




Stochastic optimization

Stochastic optimization: In reality, me may not know p exactly but
only a probability distribution function P(p). In this case, we can pose
several versions of a stochastic problem.

Version 3: Robust control — optimize the worst case cost over all
possible values p:

minyp,q l‘naXp P( >OF<Yp)q)
SUbjECttO f(yp:q:p)_o
g(y,,q)=0
Practical implementation: Draw samples { p, } from P(p) and solve
minyi,q max, ...y F(y;,q;)
subjectto f(y,,q;; p;)=0 =1, LN
g(y;,q;)=0 =1,...,N
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Practical aspects

Which formulation to choose for stochastic optimization:

* If no recourse 1s possible if the “real” parameters happen to be
unfavorable, then optimization must be robust.

- Airfoils must be designed for the least favorable viscosity
- Available rocket fuel must be designed for the worst possible winds

e [f losses are harder to tolerate than wins, then be risk averse:
- Investment strategies for retirement funds

 If we can mitigate unfavorable parameters, then we can choose the
risky strategy (“‘gambling”):

- If we are Warren Buffett
- Production strategies for oil fields where 1in the worst case another
352 hole can be drilled



Practical aspects

Stochastic optimization is typically very expensive:

 Integrals can rarely be computed analytically
» Sample sets {p / must be large enough to provide a good

approximation of the integrals
e If the deterministic problem has M constraints of the form

f(y,q;p)=0
g(y,q)=0

then the stochastic implementation has MN constraints:
f(y,q5p)=0 i=1...N
g9(y.,q,)=0 i=1,.,N

e Current research topics therefore are:
- efficient sample generation
- model reduction techniques
353 - parametric descriptions of constraints (e.g. polynomial chaos)
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