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Homework assignment 10 – due Thursday 4/22/2010

Problem 1 (PDE-constrained optimization). Geophysicists are inter-
ested in determining the structure of the earth interior by measuring how long
seismic waves from earthquakes take to travel from the earthquake source to
seismometer stations.

Let us consider the following, simplified situation: We have a one-dimensional
medium that extends from x = 0 to x =∞ (think, for example, of a semi-infinite
string or rod). Waves are excited at the left end following a function g(t) and
travel at a (constant) speed of c to the right. The equations that describe these
waves are

∂tu(x, t) + c∂xu(x, t) = 0 for 0 < x <∞, t > 0,

u(x, 0) = 0 for 0 < x <∞, t > 0,

u(0, t) = g(t) for t > 0.

These equations are called the one-way wave equation.
Let us say that at location x = 1 we have measured the signal for all times

0 ≤ t ≤ T to be z(t) and that we would want to use this to determine the
wave speed c. We could then pose the following PDE-constrained optimization
problem:

min
u∈H1,c∈R

1
2

∫ T

0

(u(1, t)− z(t))2 dt

subject to ∂tu(x, t) + c∂xu(x, t) = 0 for 0 < x <∞, t > 0,

u(x, 0) = 0 for 0 < x <∞, t > 0,

u(0, t) = g(t) for t > 0.

Derive optimality conditions for this problem. Clearly indicate the function
spaces from which each function (primal function, Lagrange multiplier, test
function) comes. You may want to absorb the boundary condition at x = 0 into
the function space as discussed in the example in class. Treat the time variable
as we did for ODE problems, i.e. include the initial conditions in weak form.
Note that all duality products are now integrals over both spatial and temporal
variables. (6 points)



Problem 2 (Bonus problem). If you feel challenged, think (and write) a
bit more about the previous problem in the following direction: For the one-
way wave equation stated above, we can actually write down the solution – it
consists of the signal at the left propagating unchanged to the right, yielding

u(x, t) =
{

g(t− x
c ) for t > x

c ,
0 otherwise.

In other words, what we see at a point x at time t equals what we saw at x = 0
(i.e. the left boundary) but at the earlier time t− x

c . Note that x
c is the time it

took the signal to propagate from the left boundary to x at the wave speed c.
If we take this solution, then the optimization problem can also be written

in the following, much simpler form:

min
c∈R

f(c) =
1
2

∫ T

0

[
g

(
t− 1

c

)
− z(t)

]2
dt.

If we are given a source function g(t) and the measured signal z(t), this is now
simply a one-dimensional problem in the scalar wave speed c. You’d think this
can’t be overly complicated.

The problem is that earthquakes are oscillatory. Take, for example, a source
of the following kind (plot it for yourself to see how it looks!):

g(t) =

{ (
1− (t−0.1)2

0.12

)
sin 4πt

0.1 for 0 < t < 0.2,

0 otherwise.

Let us assume that we measure to time T = 2 and that the signal we get is

z(t) =

{ (
1− (t−1.1)2

0.12

)
sin 4π(t−1)

0.1 for 1 < t < 1.2,

0 otherwise.

Write a program that (numerically or analytically) evaluates the objective func-
tion f(c) for the range 0.5 ≤ c ≤ 2 and plot it. How easy would you think it is
to find its minimum? (2 bonus points)

In addition to this, continue to work on your semester project.

If you have comments on the way I teach – in particular suggestions how I
can do things better, if I should do more or less examples, powerpoint slides vs
whiteboard, etc – or on other things you would like to critique, feel free to hand
those in with your homework as well. I want to make this as good a class as
possible, and all comments are certainly much appreciated!


