MATH 652: Optimization II

Lecturer: Prof. Wolfgang Bangerth
Blocker Bldg., Room 507D
(979) 8456393
bangerth@math.tamu.edu
http://www.math.tamu.edu/~ bangerth

Homework assignment 6 - due Thursday 3/11/2010

Problem 1 (Optimal control 1). Consider the following problem that gave rise to the term shooting method: We want to shoot a shell from location $x_{0}=$ $(0,0)^{T} \in \mathbb{R}^{2}$ to a target location $x_{t}=(1,0)^{T}$. The trajectory follows Newton's law which reads as follows if the only acting force is gravity:

$$
\begin{aligned}
\ddot{x}(t) & =\binom{0}{-1} \\
x(0) & =x_{0} \\
\dot{x}(0) & =v_{0} .
\end{aligned}
$$

We assume that we can control the initial velocity $v_{0} \in \mathbb{R}^{2}$ as the shell exits the cannon.

Formulate the following problems:

- The minimum time problem: The shell should get from x_{0} to x_{t} in the least amount of time.
- The minimum initial velocity problem: The shell should still get from x_{0} to x_{t}, but we want to minimize the exit velocity of the shell to minimize stress on the cannon.
- The fixed initial velocity problem: Oftentimes the magnitude of the exit velocity of the shell is fixed and given by the explosive charge. Formulate a problem whose solution is a trajectory from x_{0} to x_{t} with fixed magnitude of the initial velocity. By choosing a suitable parameterization of the control variables, try to state this problem as a linear one, i.e. objective function and all constraints should be linear.

For each of these three problems, indicate the conditions under which you think that a solution might exist and whether you think that this solution is unique.

Problem 2 (Optimal control 2). In the example above, the ODE that describes $x(t)$ can be integrated analytically (the trajectory is a parabola). State solutions (i.e. state the optimal values of the control variables and the corresponding trajectory) to the three problems you derived above.

(4 points)

Problem 3 (Integer programming). Consider the following problem:

$$
\begin{array}{ll}
\min _{x} & x_{1}+2 x_{2}+x_{3} \\
& \sqrt{1} \leq x_{1} \leq \sqrt{10} \\
& \sqrt{2} \leq x_{2} \leq \sqrt{20} \\
& \sqrt{3} \leq x_{3} \leq \sqrt{30} \\
& x_{i}, i=1,2,3 \quad \text { is integer. }
\end{array}
$$

Explain in words how the branch-and-bound algorithm can be applied to this problem. Demonstrate how it works by performing its steps on this relatively simple problem.
(4 points)

If you have comments on the way I teach - in particular suggestions how I can do things better, if I should do more or less examples, powerpoint slides vs whiteboard, etc - or on other things you would like to critique, feel free to hand those in with your homework as well. I want to make this as good a class as possible, and all comments are certainly much appreciated!

