MATH 652: Optimization II

Lecturer: Prof. Wolfgang Bangerth
Blocker Bldg., Room 507D
(979) 8456393
bangerth@math.tamu.edu
http://www.math.tamu.edu/~ ${ }^{\text {bangerth }}$

Homework assignment 1 - due Thursday 1/28/2010

Problem 1 (l_{∞} minimization). Assume you are given the following time series:

t_{i}	0	1	2	3
y_{i}	1.1	1.9	2.8	3.2

Consider the problem of fitting a line $y(t)=a t+b$ through this data set. One way to do so is to ask for that set of parameters $x=\{a, b\}$ for which the maximal deviation $f(x)=\max _{i=1 \ldots 4}\left|y_{i}-y\left(t_{i}\right)\right|$ is minimal. Note that the right hand side depends on x through the equation for $y(t)$.

Re-state this problem as a linear programming problem by introducing a (single) slack variable s. This way, you get a linear optimization problem in three variables: a, b, s.

While we will leave finding the solution of such problems for later, try to visualize the feasible set of this problem, i.e. the set of all points $\{a, b, s\}$ that satisfy the constraints of the re-formulated problem.
(6 points)

Problem 2 (A network problem). Consider the following network problem (node numbers are given in boxes):

We want to consider the problem of finding the maximal data rate for sending data from node 1 to node 4. Bandwidths of all connections are shown along edges of the graph. Edges not shown have a zero bandwidth.

Consider the formulation for the network capacity problem given on slides $14-16$ in the lecture notes. Write finding the maximal data rate as a linear optimization problem

$$
\min _{x} c^{T} x \quad \text { subject to } \quad A x \geq b
$$

State explicitly what variables make up the vector x, and state the elements of the vectors b, c and the matrix A. (Hint: x will be a 6 -dimensional vector.) Can you guess the solution of of this problem?
(6 points)

