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Problem 1 (An optimal control problem). In class, we had the example
of a rover driving from xA to xB in a landscape in which the velocity attainable
at position x given a force q(t) was given by φ(x(t))q(t). The associated optimal
control problem of finding the path of least energy consumption was given by

min
x(t)∈R2,q(t)∈R2

1
2

∫ T

0

q(t)2dt

ẋ(t) = φ(x(t))q(t),
x(0) = xA,

x(T ) = xB .

Find the optimal control q(t) and associated optimal path x(t) for the following
conditions:

xA =
(
−1
−1

)
, T = 1,

xB =
(

1
1

)
, φ =

{
1 if x2 < 0,
2 if x2 ≥ 0.

Finding the solution to this problem is not easy if you don’t know where to
look. One way is to conjecture that the path will consist of two straight pieces
from xA to (α, 0)T to xB with some α, and that q(t) is constant on each of
these segments. Using this assumption, you can put a trial solution into the
optimality conditions to see if you can satisfy all equations by using the open
parameters (e.g. α and the magnitude of q(t) on each segment). If you can
satisfy all optimality conditions, you have found a solution (a local minimum),
though there may of course be other solutions (local minima).

Answer. The Lagrangian for this problem reads

L(x(t), q(t), λ(t), ν) =
1
2

∫ T

0

q(t)T q(t)dt

−
∫ T

0

λ(t)T (ẋ(t)− φ(x(t))q(t))dt− λ(0)T (x(0)− xA)− νT (x(T )− xB).



From this, we can obtain the following optimality conditions:

ẋ(t) = φ(x(t))q(t)
x(0) = xA

λ̇(t) = −∇φ(x(t))[q(t)Tλ(t)]
λ(T ) = ν

q(t) + φ(x(t))λ(t) = 0
x(T ) = xB .

Given the values for φ, xA, xB , T stated in the problem description, these
optimality conditions are

ẋ(t) = (1 +H(x2(t)))q(t)

x(0) =
(
−1
−1

)
λ̇(t) = −

(
0

δ(x2(t))

)
[q(t)Tλ(t)]

λ(T ) = ν

q(t) + (1 +H(x2(t)))λ(t) = 0

x(1) =
(

1
1

)
,

where

H(y) =
{

0 if y < 0,
1 if y ≥ 0.

These equations are nonlinear, and we will have a hard time finding a solution
if we don’t already know where to look for. We will use the following strategy:
we propose a trial solution that will contain a number of parameters; we will
then plug it into the optimality conditions and see whether we can satisfy all
equations by choosing the parameters appropriately.

Specifically, let us assume that the optimal path consists of two parts, one
that leads along a straight line from xA to an intermediate point xi = (α, 0)T ,
using a constant force q on time interval [0, ti). Then, in the time interval (ti, 1]
we move along a straight line with constant speed from xi to xB .

Let us consider the first part. Since the path goes entirely in the lower half



plane, the optimality conditions on this part read

ẋ(t) = q(t)

x(0) =
(
−1
−1

)
λ̇(t) = 0

q(t) + λ(t) = 0

x(ti) =
(
α
0

)
.

The first and last equation, together with the assumption that q(t) is constant
on each part of the path, yield ẋ(t) = q(t) = 1

ti
(α + 1, 1)T . On this first part,

we then also have λ(t) = − 1
ti

(α+ 1, 1)T .
We can do the same argument for the second part of the path. The optimality

conditions there are

ẋ(t) = 2q(t)

x(ti) =
(
α
0

)
λ̇(t) = 0
λ(T ) = ν

q(t) + 2λ(t) = 0

x(1) =
(

1
1

)
.

If the path is straight and at constant velocity, we will find again from the first,
second, and last conditions that ẋ(t) = 2q(t) = 1

1−ti (1 − α, 1)T . Likewise, the
second to last condition implies λ(t) = − 1

2(1−ti) (1− α, 1)T .
We now have two parameters, α, ti that we need to determine. We can use

the jump conditions in the original optimality conditions,

λ̇(t) = −
(

0
δ(x2(t))

)
[q(t)Tλ(t)]

for this purpose. This equation has x− and y−components. Let us consider
the x−component first: λ̇1 = 0. We have previously established that for t <
ti, λ1(t) = − 1

ti
(α + 1) and for t > ti, λ1(t) = − 1

2(1−ti) (1 − α). Since the
time derivative must be zero across this interface, we see that − 1

ti
(α + 1) =

− 1
2(1−ti) (1− α), or equivalently:

(2− 2ti)(α+ 1) = ti(1− α). (1)

The y−component of the condition reads as follows:

λ̇2 = −δ(x2(t))[q(t)Tλ(t)].



To make sense of this, let us integrate this equation from ti − ε to ti + ε:

λ2(ti + ε)− λ2(ti − ε) = −
∫ ti+ε

ti−ε
δ(x2(t))[q(t)Tλ(t)] dt.

Before and after ti, the term q(t)Tλ(t) is constant, but it could be discontinuous
at ti. Let us call the respective values f±, then using what we’ve found out about
q(t) and λ(t) above, we see that

f− = q(t)Tλ(t)|t=ti− = − 1
t2i

[(α+ 1)2 + 1],

f+ = q(t)Tλ(t)|t=ti+ =
1
2

1
(1− ti)2

[(1− α)2 + 1].

Then, with f(t − ti) the function that takes on f− or f+ for t − ti < 0 and
t− ti > 0, respectively, we have

λ2(ti + ε)− λ2(ti − ε) = −
∫ ti+ε

ti−ε
δ(x2(t))f(t− ti) dt.

Let us transform the integration variable from t to x2. We then get

λ2(ti + ε)− λ2(ti − ε) = −
∫ ε

−ε
δ(x2)

f(x2)
ẋ2

dx2.

We have here made use of the fact that f(x2) = f± = f(t − ti) because x2(t)
switches from negative to positive at the same time as t − ti switches from
negative to positive.

Now, to evaluate the integral, think of the delta function as a Gaussian
function that we make narrower and narrower. Since the rest of the integrand,
f(x2)
ẋ2

is piecewise constant, we get

λ2(ti + ε)− λ2(ti − ε) = −1
2

[
f+

ẋ+
2

+
f−

ẋ−2

]
= −1

2

[
−q

T q|ti+
4q2|ti+

− qT q|ti−
q2|ti−

]
On the other hand, we know the left hand side too:

− 1
2(1− ti)

+
1
ti

= −1
2

[
−q

T q|ti+
4q2|ti+

− qT q|ti−
q2|ti−

]
. (2)

The equations (1) and (2) now give us two conditions for the two variables
ti, α. There is no simple closed form solution to this problem, but we can
numerically solve it to find

ti = 0.54559..., α = −0.53826...

Not coincidentally, using these values, we can see that ‖q(t)|t=ti−‖ = ‖q(t)|t=ti+‖,
i.e. the magnitude of the force applied is constant throughout the path – just
the speed is different.


