
MATH 652: Optimization II
Lecturer: Prof. Wolfgang Bangerth

Blocker Bldg., Room 507D
(979) 845 6393
bangerth@math.tamu.edu
http://www.math.tamu.edu/~bangerth

Partial answers for homework assignment 1

Problem 1 (l∞ minimization). In last week’s homework, you formulated
as a linear program the problem of finding a line of the form y(t) = at+ b using
l∞ minimization through this data set:

ti 0 1 2 3
yi 1.1 1.9 2.8 3.2

You should have ended up with a linear program in three variables and with
eight constraints.

We have seen in class that among the solutions of a linear program is always
at least one vertex. A simple way to find the solution is to find all basic solutions,
and then

• eliminate those that are not feasible, i.e. select only the feasible basic
solutions (we have seen that these are then the vertices of the feasible set)

• choose the feasible basic solution for which the objective function has the
smallest value.

Perform this procedure by writing a program (or doing it by hand :-) that
computes all basic solutions, tests for feasibility, and then checks their objective
function values. Answer the following questions: (i) How many basic solutions
exist for this problem? (ii) How many of these are feasible? (iii) What is
the minimal objective function value? (iv) At how many vertices is this value
attained?

Answer. By simply enumerating all possible active sets, we find the following
answers:

(i) There are 48 basic solutions characterized by different active sets. Note
first that this is less than the theoretical maximum of

(
8

3=56

)
basic solutions

one could get by choosing three constraints from the total of eight. The
reason is that in some cases, the three selected constraints are not linearly
independent and consequently intersect not at a single point but at a
line or a plane. Furthermore, some of 48 basic solutions lie at identical
locations, leaving only 30 unique basic solutions.

(ii) Of these, only 3 basic solutions are actually feasible with respect to the
remaining constraints and are therefore vertices of the feasible set. This
makes sense, given the feasible set you were supposed to show in last
week’s homework and that was the volume above the following manifold:

Note that the picture allows us to identify the three vertices. In fact, they
are at the following locations:

a b s
0.4 1.55 0.45
0.7 1.25 0.15
0.85 0.875 0.225

(iii) At the second one of these vertices, the objective function is minimal. In
fact, since the objective function is f(a, b, s) = s, the optimal value is 0.15
as can be seen from the table.

(iv) By the same token, it is obvious that the two other vertices of the feasible
set have larger objective function values, and the optimum is therefore
unique.

When computing whether the matrix whose rows contains the vectors aT
i of

the three selected constraints has full rank, one must take care of the fact that
on a computer we can only operate with finite precision. For example, one way
to test whether a matrix has full rank would be to compute its determinant and
see if it is non-zero. However, in finite precision, a matrix whose determinant
is 10−16 is, for all practical purposes, singular. Real-world programs therefore
never test floating point numbers x for finiteness, but use a test of the form

|x| ≥ εξ

where ε is of the order of magnitude of round-off (for example 10−15 when using
double precision) and ξ is a (positive) number that indicates the typical size

and in the same physical units of numbers like x. For example, a practical test
for singularity of a matrix could test whether

detA ≥ 10−15 1
n2

n∑
i,j=1

|aij |.

Similarly, one has to take care when testing whether a constraint is satisfied
by a vector x or not (i.e. whether it is feasible). In mathematical notation, we
simply test whether

aT
i x ≥ bi ∀i.

On the other hand, in finite computer arithmetic, a vector x may be so that
after evaluating the left hand side it is, for all practical purposes, almost exactly
equal to bi, but happens to be less than bi due to round-off. A practical test
would be to use

aT
i x ≥ bi − εξ ∀i.

Here, one could choose ξ as ξ = ‖ai‖‖x‖.
Note that in both cases above we have not chosen a fixed prescribed tolerance

ε = 10−15 but have instead made it relative to the expected size of objects on
the left and right hand sides of comparisons. The reason is that we want this to
work independent of the size of vector or matrix elements: if someone is solving
linear problems from quantum mechanics, then the elements of ai and x may
be of the order 10−34 in which we case almost every vector would satisfy the
inequality

aT
i x ≥ bi − ε ∀i

simply because all quantities except for ε are so small. Conversely, in linear
problems from cosmology where x ' 1020, vectors x for which a constraint is
active may or may not satisfy this inequality because the round-off involved in
evaluating the left hand side would be of the order of 10−16 times 1020 – far
larger than the tolerance we allow on the right. The only way to avoid such
trouble is to make the tolerance dependent on the expected size of round-off,
which includes the expected size of the objects with which we compute.

Problem 2 (l∞ minimization, again). Repeat the same problem with the
following set of measured data:

ti 0 1 2 3 4 5 6 7 8 9
yi 1.1 1.9 2.8 3.2 4 5 6 7 8 9

Answer the same questions as before. What is likely going to be the problem
in your algorithm if I kept giving you more and more data points? Can you
estimate how the number of operations your algorithm needs to perform grows
asymptotically if the number N of data points grows?

Answer. With these now 10 data points, we get 20 constraints on the slack
variable s and consequently there are at most

(
20

3=1140

)
basic solutions. Due

to the potential of linearly dependent rows, there are in fact only 900 basic
solutions, only 4 of which are feasible. The optimum lies at x∗ = (a, b, s)T =
(79
90 ,

132
180 ,

11
36) where the objective function has value 11

36 . This solution is unique.
In general, to find the solution of this problem with N data points, we get

a problem in three variables with m = 2N constraints. Thus, we have to check
for

(
m
3

)
= 1

3N(2N − 1)(2N − 2) matrices of size 3times3 that they have full
rank (which costs 33 operations), solve for the basic solution (which can be
done at the same time as checking for full rank), compare the remaining 2N −3
constraints for feasibility at a cost of (2N − 3)3 multiplications, and evaluate
the basic solution with the previously best (1 operation). This yields a total
effort of order O(N4) operations.

While this is certainly not an appealing prospect (the effort will be quite
large if we have to, say, fit a line through 1,000 data points), it is also not a
terrible complexity – at least the algorithm is still of polynomial order in N , and
not exponential! The main reason is that here the number of possible vertices
of the feasible set only grows polynomially with the number of variables and
constraints, not exponentially.

