
(6)(6)

(1)(1)

(4)(4)

(2)(2)

(5)(5)

(3)(3)

Some tricks with Maple to make it easier to work with many variables
and equations
What I really meant to do in class yesterday was to talk about a few tricks with Maple that will make it
simpler to work with the many variables and functions you will have in the astronomy project. The
general idea is this: let's assume we only had to track a single body in its way through the solar system,
then it will have x-, y-, and z-coordinates. We could have individual functions, say for
this, but it would be awkward to work with this because we continuously have to have them all in a
single formula. For example, the gravity term has the distance between bodies cubed in the denominator.
So we would have to write for the distance. It would be much nicer if we
could somehow do this through a sum.
The way to do this is not to assign different symbols to the three components, but to say that

 are the three functions that describe the x-, y- and z-coordinates of the body at
time t. Then, the distance can be computed as

Note that I didn't have to write out the sum, but that I rather summed over all indices I needed. Note also
that I'm careful to carry around the fact that each of these is a function of time.
So let's move beyond this: let's assume I have bodies in my solar system. Then I would say that

 is the x-coordinate of the th body, and similarly for the y- and z-
coordinates. In my formulas I then need the distance between bodies and . Let me introduce a function
for this:

This is a function that takes 2 arguments, namely the numbers of the two bodies, and returns their
(scalar) distance. For example, to get the distance between bodies 1 and 3, I would call

Similarly, I mighth want to define the vector that points from the position of body to the position of
body :

In the function that we defined above, the function takes two arguments, and and returns a vector with
three elements. If we called it with arguments as in the line immediately above, we get the
three-components of the vector that separates bodies 1 and 3. We could extract the x-component of this
vector like this:

The problem with the definition of the function is that we had to write out the elements of
the vector by hand. That's tedious, because the three elements of the vector the function returns only
differ by the respective second index of each term. Fortunately, there's a better way to do that: Maple's

 function just repeats an expression several times, each time replacing an index by a different value.

(12)(12)

(7)(7)

(11)(11)

(13)(13)

(10)(10)

(14)(14)

(9)(9)

(8)(8)

For example, we could call

And, yes indeed, we get the expression three times, with replaced by 1, 2, and 3 respectively. So to
make a vector of this, we just have to enclose the call of the function by square brackets and we can
simplify the definition of the distancevector function as follows:

So we get the same result with less typing and hopefully fewer errors.

So what can you do with this?
Let's assume you have bodies, numbered , in such a way that each of them is attached by
a rubber band to the previous and to the next one, with a rubber band also between body 1 and body 5 (i.
e. they are linked in a circle). What this means is that body is connected to body (its
right neighbor) and to body . Rubberbands produce a force that is proportional to the
distance between the bodies and in the negative direction of the distance vector. Let's assume the
proportionality constant is 1, then the force on body is given by the following sum over the two bodies
it is attached to:

For example, let's say there are bodies, then the x-component of the force on body 1 is given by

That looks about right. There are no other forces, so you can imagine this to be five bodies that are
mutually attached to each other through rubber bands but otherwise are freefloating somewhere out in
space.

So now we need differential equations. We need them for all 5 bodies and all 3 components of the vector
position. Let's start with the x-component of body zero, using Newton's law and assuming that the mass
of all the bodies is one:

We could repeat this for all 15 equations we need, but that would be boring. Let's start slow and use the
 function again only for the three components of the th body and respective force (note how we call

 to get the second time derivative of):

(15)(15)

(18)(18)

(17)(17)

(16)(16)

So this gives us the three differential equations for body . Now let's wrap this whole thing into one more
 call to get the differential equations for all bodies (which we will all put into the variable
):

Ah, 15 differential equations generated in a single command! Since we have a second order differential
equation (or, rather, 15 such equations), we have to have 2 initial conditions for each variable: position
and velocity. So we need an N-by-3 matrix of initial positions and an N-by-3 matrix of initial velocities.
Since this is just a toy problem, let us generate them randomly netween zero and one (we have to specify
the range as floating point numbers to get floating point positions rather than integers -- if we had given
the range as , Maple would have drawn each element of the random matrix as either zero or one,
never in between):

Next, we have to generate the initial conditions in a way that Maple's dsolve function can understand
them. We could again write them out like so:

(Note that we have numbered bodies starting at zero while the matrix entries are numbered starting at 1!)
. But that would be cumbersome, since we would have to write 30 such equations (initial positions +
velocities for each of the 3 components of each of the 5 bodies). Let's just use the command again:

(20)(20)

(21)(21)

(19)(19)

So let's put all this together into one big list that we can then feed to :

(22)(22)

(21)(21)

We can now give this to . Maybe surprisingly, Maple can solve this set of equations analytically,
giving us an incredibly long expression for the 15 time dependent functions. Let's not go there, we are,
after all, not interested in the exact solution. Rather, we want to plot the result, so let's get ourselves a
numerical solution and assign it to a variable:

As a final step, we can plot it the solution. If we're only interested in the trajectory of the first body, here
it is (where I have rotated the picture for a better view):

(21)(21)

OK, so that's already pretty cool. It was a bit cumbersome to write out the three variables again, but we
could have used the command once more (in the un-rotated image):

(21)(21)

Of course, what we'd really like to do is see how the set of all five bodies behaves. So out comes the
command one last time:

(21)(21)

Lovely, isn't it!? Now if you wanted to play around with this a bit, increase the number of bodies --
and notice that you don't have to change any of the equations at all as they should all do the right thing
for any number of bodies !

