As discussed in class, graphs and graph based models can conveniently be represented using objects from linear algebra: vectors and matrices. In the following, let us try to be as general as we can, so let's assume that we have N isotopes that decay into each other (and choose $\mathrm{N}=5$ here), then the rest of the program should look like the following. I've added an alternative graph below that shows the various lines with different colors -- it uses the same idea of how we plotted the various trajectories in programs like the solar system plots.
$N:=5$;

$$
\left.\begin{array}{rl}
k:=\operatorname{vector}(N,[\ln (2) & \left.\left., \frac{\ln (2)}{2}, \frac{\ln (2)}{3}, \ln (2), 0\right]\right) ; \\
& {[\ln (2)}
\end{array} \begin{array}{llll}
\frac{1}{2} \ln (2) & \frac{1}{3} \ln (2) \ln (2) & 0 \tag{2}
\end{array}\right] .
$$

$P:=\operatorname{matrix}(N, N,[[0,1,0,0,0],[0,0,1,0,0],[0,0,0, .9, .1],[0,0,0,0,1],[0,0,0,0$, 0]]);

$$
\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \tag{3}\\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0.9 & 0.1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

ode $:=\operatorname{seq}(\mathrm{D}(x[i])(t)=-k[i] \cdot x[i](t)+\operatorname{sum}(P[j, i] \cdot k[j] \cdot x[j](t), j=1 . . N), i=1 . . N)$;
$\mathrm{D}\left(x_{1}\right)(t)=-\ln (2) x_{1}(t), \mathrm{D}\left(x_{2}\right)(t)=-\frac{1}{2} \ln (2) x_{2}(t)+\ln (2) x_{1}(t), \mathrm{D}\left(x_{3}\right)(t)=$

$$
\begin{align*}
& -\frac{1}{3} \ln (2) x_{3}(t)+\frac{1}{2} \ln (2) x_{2}(t), \mathrm{D}\left(x_{4}\right)(t)=-\ln (2) x_{4}(t) \tag{4}\\
& +0.3000000000 \ln (2) x_{3}(t), \mathrm{D}\left(x_{5}\right)(t)=0.03333333333 \ln (2) x_{3}(t) \\
& +\ln (2) x_{4}(t)
\end{align*}
$$

initialAmounts $:=\operatorname{vector}(N,[1,0,0,0,0])$;

$$
\begin{gather*}
\text { ic } \left.:=\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0
\end{array}\right] \tag{5}\\
\operatorname{seq}(x[i](0)=\text { initialAmounts }[i], i=1 . . N) ; \\
x_{1}(0)=1, x_{2}(0)=0, x_{3}(0)=0, x_{4}(0)=0, x_{5}(0)=0 \tag{6}
\end{gather*}
$$

solution $:=$ dsolve($\{$ ode, ic $\}$, numeric);

$$
\begin{equation*}
\text { proc }\left(x _r k f 45\right) \text {... end proc } \tag{7}
\end{equation*}
$$

myplots $:=\operatorname{seq}($ plots $[$ odeplot $]($ solution, $[t, x[i](t)], t=0 . .50), i=1 . . N) ;$
$\operatorname{PLOT}(\ldots), \operatorname{PLOT}(\ldots), \operatorname{PLOT}(\ldots), \operatorname{PLOT}(\ldots), \operatorname{PLOT}(\ldots)$
plots[display](%7Bmyplots%7D);

$\operatorname{plots}[$ odeplot $]($ solution, $[\operatorname{seq}([t, x[i](t)], i=1 . . N)], t=0 . .50) ;$

