MATH 651: Optimization I

Lecturer: Prof. Wolfgang Bangerth
Blocker Bldg., Room 507D
(979) 8456393
bangerth@math.tamu.edu
http://www.math.tamu.edu/~ bangerth

Homework assignment 1 - due Tuesday 9/15/2007

Problem 1 (Optimization problems in your field). Optimization problems are usually posed in the following way: let x be a vector of variables that describe the quantities that are subject to optimization (i.e. the design variables u introduced in the first class) and auxiliary variables (i.e. the state variables y); then the problem is to find that vector x for which

$$
\begin{aligned}
& f(x) \rightarrow \min ! \\
& g(x)=0 \\
& h(x) \geq 0
\end{aligned}
$$

with an objective function $f(x)$, a function $g(x)$ that describes equalities that need to hold at the solution, and $h(x)$ inequalities. Both g and h can be vector-valued, and in this case the (in)equalities have to hold for each element $g_{1}(x), g_{2}(x), \ldots, h_{1}(x), h_{2}(x), \ldots$.

For a typical problem related to your research (or an area you simply find interesting), describe as best as you can:

- What are the variables that make up x ?
- What are the functions f, g, h (i.e. what do they mean) and, if possible, their form as a formula?
- What can you say about the classification of the problem, i.e. is it convex/nonconvex, smooth/nonsmooth, etc, according to the criteria discussed in class?

Problem 2 (Fitting data 1). Assume you are given the following time series:

t_{i}	0	1	2	3
y_{i}	1.1	1.9	2.8	3.2

Consider the problem of fitting a line $y(t)=a t+b$ through this data set. One way to do so is to ask for that set of parameters $x=\{a, b\}$ for which the sum
of squares deviation $f(x)=\sum_{i=1}^{4}\left|y_{i}-y\left(t_{i}\right)\right|^{2}$ is minimal. Note that the right hand side depends on x through the equation for $y(t)$.

Plot this function $f(x)$ for the values of t_{i}, y_{i} above. Describe whether this function $f(x)$ is linear/nonlinear, convex/nonconvex, smooth/nonsmooth, whether derivatives can be computed or not, and whether the design variables a, b are discrete or continuous.

From the plot of $f(x)$ obtain (using your eyes, no minimum finder) a reasonable guess for those values a, b for which $f(x)$ is minimal, and plot the resulting line $y(t)=a t+b$ along with the data points above.
(4 points)
Problem 3 (Fitting data 2). Repeat all parts of the previous problem but replace the objective function by the one that tries to minimize the sum of absolute values $f(x)=\sum_{i=1}^{4}\left|y_{i}-y\left(t_{i}\right)\right|$ instead of squares. Comment in particular on the smoothness of $f(x)$.
(4 points)

Problem 4 (Fitting data 3). Repeat the previous problem a final time, but replace the objective function by the one that tries to minimize the maximal deviation, $f(x)=\max _{1 \leq i \leq 4}\left|y_{i}-y\left(t_{i}\right)\right|$. Comment again on the smoothness of $f(x)$. Can you say something about the uniqueness of the minimum?
(4 points)
Problem 5 (Convexity, derivatives). Let $x=\left\{x_{1}, x_{2}\right\} \in \mathbb{R}^{2}$ and $f(x)=$ $\|x\|_{l_{2}}^{2}=x_{1}^{2}+x_{2}^{2}$. Prove that $f(x)$ is a strictly convex function. Compute the gradient $\nabla f(x)$ at all points x and infer from that where $f(x)$ has a minimum using the necessary condition for minima of convex differentiable functions.
(3 points)
Problem 6 (Convexity, derivatives). Let $x=\left\{x_{1}, x_{2}\right\} \in \mathbb{R}^{2}$ and $f(x)=$ $\|x\|_{l_{1}}=\left|x_{1}\right|+\left|x_{2}\right|$. Unlike the function in the previous problem, this function is not differentiable everywhere. Plot this function if you have trouble imagining how it might look.

Prove that $f(x)$ is a convex function. Compute the subdifferential $\partial f(x)$ at all points x and infer from that where $f(x)$ has a minimum using the necessary condition for minima of general convex functions.
(4 points)

