MATH 417: Numerical Analysis

Instructor: Prof. Wolfgang Bangerth bangerth@math.tamu.edu
Teaching Assistants: Dukjin Nam dnam@math.tamu.edu

Homework assignment 10 - due 4/26/2007

Problem 1 (Numerical integration.) Consider the problem of finding the numerical value of the integral

$$
\int_{0}^{1} \arctan x d x
$$

The exact value of this expression is $\frac{\pi}{4}-\frac{\ln 2}{2}=0.43882 \ldots$.
Evaluate above integral by writing programs that use
(a) the trapezoidal rule,
(b) the Simpson rule.

Split up the integration interval $[0,1]$ into successively smaller sub-intervals of length $h=1, \frac{1}{2}, \frac{1}{4}, \ldots, \frac{1}{128}$ and apply the two quadrature rules above to each subinterval. Compute the approximated value of the integral and the error. Determine the convergence order from this data.
(4 points)

Problem 2 (Integration of an implicit function). Let $f(x)$ be defined as in last week's homework, i.e. $f(x)$ is that value y for which $y e^{y}=x$. Compute

$$
\int_{0}^{10} f(x) d x
$$

using the trapezoidal rule for step sizes $h=1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots, \frac{1}{32}$. Determine the order of convergence.
(4 points)

Problem 3 (Numerical solution of a ODE). Consider the following scalar ordinary differential equation (ODE):

$$
x^{\prime}(t)=\frac{1}{2} x(t), \quad x(0)=1
$$

The solution of this equation is $x(t)=e^{\frac{1}{2} t}$. Compute approximations to $x(4)$ using the

- first order Taylor expansion method,
- second order Taylor expansion method,
- implicit Euler method,
each with step sizes $h=2,1, \frac{1}{2}, \frac{1}{4}, \ldots, \frac{1}{32}$. Compute their respective errors $e=\left|x_{N}-x(4)\right|$ where x_{N} is the approximation to $x(4)$ at the end of the last time step, and compute the convergence rates. Compare the accuracy of all these methods for the same step size h.
(7 points)

