MATH 417: Numerical Analysis

Instructor: Prof. Wolfgang Bangerth
bangerth@math.tamu.edu
Teaching Assistants: Dukjin Nam dnam@math.tamu.edu

Homework assignment 8 - due 4/5/2007

Problem 1 (Steepest descent iteration). Repeat what you did for Problem 1 of Homework 6 (Jacobi iteration) and Problem 2 of Homework 7 (GaussSeidel iteration), but use the steepest descent algorithm instead to compute the vectors $x^{(k)}$. Generate the same plots as before. Compare your results with the previous results, in particular compare how quickly the iterations appear to converge.
(5 points)
Problem 2 (Conjugate gradient iteration). Do the same as in Problem 1 one last time, but use the Conjugate Gradient algorithm this time to compute the vectors $x^{(k)}$. Generate the same plots as before. Compare your results with the previous results, in particular compare how quickly the iterations appear to converge.
(5 points)

Problem 3 (Lagrange interpolation).

(a) Compute the Lagrange interpolation polynomials $L_{4, k}, k=0 \ldots 3$, for the points $x_{0}=1, x_{1}=2, x_{2}=1.5$ and $x_{3}=1.6$.
(b) Calculate the interpolating polynomial for the data set where $y_{k}=\log x_{k}$ at the four points x_{k}. Write the polynomial in the form $p_{4}(x)=a_{3} x^{3}+$ $a_{2} x^{2}+a_{1} x+a_{0}$.
(4 points)

Problem 4 (Lagrange interpolation). The polynomial $p_{4}(x)$ calculated in Problem 3 by construction interpolates the function $f(x)=\log x$. Compute an upper bound for the error on the interval [1,2], using the theorem that states how large $\left|f(x)-p_{4}(x)\right|$ can at most be.
(3 points)

