MATH 417: Numerical Analysis

Instructor: Prof. Wolfgang Bangerth
bangerth@math.tamu.edu
Teaching Assistants: Dukjin Nam
dnam@math.tamu.edu

Homework assignment 6 - due 3/22/2007

Problem 1 (Jacobi iteration). Let A, b be the 100×100 matrix and $100-$ dimensional vector defined by

$$
A_{i j}=\left\{\begin{array}{ll}
2.01 & \text { if } i=j, \\
-1 & \text { if } i=j \pm 1, \\
0 & \text { otherwise },
\end{array} \quad b_{i}=\frac{1}{100} \sin \left(\frac{2 \pi i}{50}\right)\right.
$$

Apply Jacobi's method to solving $A x=b$. Write a program that implements the Jacobi method and start with a vector x_{0} with randomly chosen elements in the range $-1 \leq\left(x_{0}\right)_{i} \leq 1$ (i.e. with elements generated from what the rand() function or a similar replacement returns).
(Hint: It is not necessary to actually store the complete matrix just to multiply with it. Rather, use that the i-th component of the vector $A y$ is $(A y)_{i}=\sum_{j=1}^{n} A_{i j} y_{j}=2.01 y_{i}-y_{i-1}-y_{i+1}$ at least for $2 \leq i \leq n-1$, and obvious modifications for $j=1$ and $j=n$.)

Run 200 Jacobi iterations and plot the values of $\left(x^{(k)}\right)_{i}$ against i for every few iterations, for example $k=0,2,5,10,20,50,100,200$. What do you observe?
(5 points)

Problem 2 (Alternative vector norms). Let A be a symmetric and positive definite $n \times n$ matrix. Show that

$$
\|x\|_{A}=\sqrt{x^{T} A x}
$$

is a norm for vectors $x \in \mathbb{R}^{n}$. (Hint: Use the eigenvalue and eigenvector decomposition of symmetric positive definite matrices.)

Problem 3 (Jacobi iteration). Solve problems 7.3 .1 a) and b) of the book (using paper and pencil).
(3 points)
Problem 4 (Gauss-Seidel iteration). Solve problems 7.3.3 of the book (using paper and pencil) for parts a) and b).

Happy spring break!

