MATH 417: Numerical Analysis

Instructor: Prof. Wolfgang Bangerth bangerth@math.tamu.edu,
Teaching Assistants: Dukjin Nam dnam@math.tamu.edu

Homework assignment 4 - due 2/27/07

Problem 1 (Convergence order for functions). Determine the exponent p in the following statements and explain your choice:
a) $12 x^{4}-2 x^{3} \ln x=\mathcal{O}\left(x^{p}\right) \quad$ as $x \rightarrow \infty$.
b) $\frac{2}{(x-1)^{2}}-\ln \ln x+\frac{1}{\ln \ln x}=\mathcal{O}\left((x-1)^{p}\right) \quad$ as $x \rightarrow 1$.
c) Is there an exponent p for which the statement

$$
x \ln x=\mathcal{O}\left(x^{p}\right) \quad \text { as } x \rightarrow \infty
$$

is true? If not, is there an exponent for which the following holds:

$$
x \ln x=o\left(x^{p}\right) \quad \text { as } x \rightarrow \infty .
$$

Problem 2 (Gaussian elimination). Solve (on paper, showing the individual steps) the following system of linear equations using Gaussian elimination:

$$
\left(\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right)
$$

Verify that your result is correct.
(The matrix is the example is the so-called Hilbert matrix, with entries $H_{i j}=\frac{1}{i+j-1}$. It has a number of nasty properties that make it a good testcase for matrix algorithms.)
(5 points)

Problem 3 (Gaussian elimination). Using Gaussian elimination, it is simple to solve the following problem

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) .
$$

One would eliminate the occurrence of x_{1} in the second equation by subtracting the first from the second equation, arriving at a diagonal matrix.

Describe what happens if the system instead looked like this:

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) .
$$

Does the algorithm still work? If not, propose a remedy.
Problem 4 (Positive definite matrices). Positive definite matrices are those matrices for which $x^{T} A x>0$ for all vectors $x \neq 0$. These matrices play an important role in many applications of engineering and physics. Let us consider one of their properties.

Any matrix A can be written as $A=A^{s}+A^{a}$, where the symmetric part A^{s} and the skew-symmetric part A^{a} of a matrix are defined as

$$
A^{s}=\frac{A+A^{T}}{2}, \quad A^{a}=\frac{A-A^{T}}{2} .
$$

Prove that if A is positive definite then A^{s} is positive definite, and vice versa.

Problem 5 (LU decomposition). Solve the linear system $A x=b$ with the Hilbert matrix system we already saw in Problem 2:

$$
A=\left(\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7}
\end{array}\right), \quad b=\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right)
$$

by applying the following steps with paper and pencil:

1. Compute the LU decomposition of A and write down the elimination steps.
2. Use forward and backward substitution to obtain the solution x.
