MATH 417: Numerical Analysis

Instructor:
Prof. Wolfgang Bangerth bangerth@math.tamu.edu,
Teaching Assistants: Dukjin Nam dnam@math.tamu.edu

Homework assignment 3 - due 2/15/2007

Problem 1 (Secant method). This problem is an example of finding the root of a function f that is only given in form of a procedure, a likely case in applications, instead of as a closed form expression.

In order to define the function $g(x)$, consider the following iteration: set $a_{0}=1$ and compute the values a_{i} by the following iteration:

$$
a_{i}=a_{i-1}+\frac{x \cos a_{i-1}+x}{10} .
$$

Clearly, we can compute a_{1} from $a_{0}=1$ for each value of x. Similarly, we can compute a_{2} from a_{1}, and so on. Now, let $g(x)$ be the function whose value equals a_{10} for any given value of x.
a) Write a program function that given a value x returns $g(x)=a_{10}$ by computing the iteration above. Use your program to plot $g(x)$ in the range $-10 \leq x \leq 10$.
b) Assume we want to solve the equation $f(x)=0$ where $f(x)=g(x)-2$. State why Newton's method may be ill-suited for this task.
c) Write a program that finds a root of $f(x)=g(x)-2$ up to 6 digits accuracy using the secant method. Use $x_{0}=0, x_{1}=1$ as starting points. State how many iterations you needed to get the desired accuracy. (Hint: Because the problem - probably - doesn't have an analytic solution, the exact location x^{*} of the root of $f(x)$ is unknown. So how do you know when your iterate x_{k} is accurate to six digits, i.e. that $x_{k}-x^{*}<10^{-6}$? In order to test algorithms, one often lets them run for a quite significant number of iterations, for example so that between x_{k} and x_{k+1} the 10th or 12 th digit doesn't change any more. If that is the case, then one can be virtually assured that the first 9 or 11 digits of x_{k+1} are correct. You can then use this as a pretty good approximation of x^{*} and compare the first few iterates against it, to count how many it takes so that the first 6 digits coincide.)
d) Write a program that solves the same problem using the bisection method instead of the secant method, using $a_{0}=0, b_{0}=1$ as the initial interval. State how many iterations it takes this time to get 6 correct digits. How do the secant and the bisection method compare in terms of function evaluations for this problem?
(8 points)

Problem 2 (Root finding methods). Compare, in words, the bisection method, Newton's method, and the secant method with respect to the following criteria: reliability of finding a root of a function, speed of convergence, complexity (i.e., a method is better if it needs fewer evaluations of $f(x)$ per iteration, or if it only needs function values rather than derivatives).
(3 points)

Problem 3 (Convergence order for sequences). Determine the order of convergence and the asymptotic error constant for the following sequences:
(a) $a_{n}=5.0625,2.25,1, \frac{4}{9}, \frac{16}{81}$
(b) $b_{n}=2.718,2.175,1.740,1.392,1.113,0.8907$
(c) $c_{n}=0.318,0.180,0.0761,0.021,3.04 \cdot 10^{-3}, 1.68 \cdot 10^{-4}, 2.17 \cdot 10^{-6}$.

Problem 4 (Convergence order for functions).

(a) For the functions $f(x)=x^{4}+2 x^{2}+1$ and $g(x)=x^{4}-2 x^{2}-3 x$, determine the exponent p in the asymptotic equation

$$
f(x)-g(x)=\mathcal{O}\left(x^{p}\right) \quad \text { as } x \rightarrow \infty .
$$

(b) For the functions $f(x)=\sin x$ and $g(x)=x$, determine the exponent p in the asymptotic equation

$$
f(x)-g(x)=\mathcal{O}\left(x^{p}\right) \quad \text { as } x \rightarrow 0 .
$$

(Hint: Since we are interested in the limit of x approaching zero, it may make sense to expand $f(x)$ into a Taylor series around $x_{0}=0$.)
(4 points)

