MATH 412: Theory of Partial Differential Equations

Lecturer: Prof. Wolfgang Bangerth
Blocker Bldg., Room 507D
(979) 8456393
bangerth@math.tamu.edu
http://www.math.tamu.edu/~bangerth

Homework assignment 7 - due Thursday 10/18/2007

Problem 1 (Linearity of the Fourier transform). Solve Problem 3.2.3 in the book.
(2 points)

Problem 2 (Fourier series). Derive the Fourier series on $[-\pi, \pi]$ of the function $f(x)=x$. From this series, derive the Fourier series of $F(x)=x^{2} / 2$ without using the formulas $\frac{1}{L} \int_{-L}^{L} F(x) \cos n x d x$ (and similar for the sine terms) to compute the coefficients A_{0}, A_{n}, B_{n} of the second series.
(4 points)

Problem 3 (Fourier series). Derive the Fourier series on $[-\pi, \pi]$ of the function $F(x)=x$ (it is the same as in Problem 2). State whether you can derive the Fourier series of the function $f(x)=1$ from it by differentiating each term in the series of $F(x)$ individually. State the Fourier series of $f(x)$.
(3 points)

Problem 4 (Fourier series). Generate a computer plot of the partial sums $A_{0}+\sum_{n=1}^{10} A_{n} \cos (n x)+B_{n} \sin (n x)$ consisting of the first 10 terms for the Fourier series of the functions $f(x)=1, F(x)=x$, where the Fourier series is calculated over the interval $-\pi \ldots \pi$. Plot these Fourier series on the larger interval $-2 \pi \ldots 2 \pi$. Also generate a plot of the partial sum $\sum_{n=1}^{10}-A_{n} n \sin (n x)+$ $B_{n} n \cos (n x)$ with the coefficients A_{n}, B_{n} of the Fourier series of $F(x)=x$ (this is the term-by-term differentiated Fourier series of $F(x)$.)
(3 points)

Problem 5 (Fourier series). Calculate or look up the Fourier series on the interval $-\pi \ldots \pi$ of the function

$$
f(x)=\left\{\begin{array}{l}
1 \text { for } x>0 \\
0 \text { for } x \leq 0
\end{array}\right.
$$

Generate plots of the partial sums $S_{N}(x)=A_{0}+\sum_{n=1}^{N} A_{n} \cos (n x)+B_{n} \sin (n x)$ consisting of the first N terms, for each value $N=2,5,10,20,50$. Try to determine the maximal difference $\left|f(x)-S_{N}(x)\right|$ numerically or graphically. We know that for $N \rightarrow \infty, S_{N}(x) \rightarrow f(x)$ almost everywhere; is this consistent with your results?
(4 points)

