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Homework assignment 4 – due Thursday 9/27/2007

Problem 1 (Retake; solutions of the heat equation). Solve problem
2.3.3 (all parts) in the book. Note the remark at the top of the next page and
that similar problems are solved in the main text. (4 points)

Problem 2 (Solutions of the Laplace equation). In class we have seen
that one can solve the Laplace equation on a rectangle

−∆u = 0 in Ω,

u = g on ∂Ω,

by chopping the solution up into four parts u = u1 +u2 +u3 +u4, where each of
the ui satisfies boundary conditions on one part of the boundary and is zero on
the other three parts. We have constructed u4 in class that satisfies the bound-
ary conditions at x = 0. Construct u2 that satisfies the boundary conditions at
the right edge, x = L, and is zero on all other parts of the boundary. Identify
the steps that differ from what we did in computing u4. (5 points)

Problem 3 (Uniqueness of solutions of the Laplace equation). In class,
it was shown that the heat equation has solutions (existence) by explicitly con-
structing them, and that there is only one solution (uniqueness).

We achieved the latter by assuming that there are two solutions u1, u2 that
satisfy the PDE, boundary conditions, and initial conditions. We then intro-
duced the difference δ = u1 − u2 and stated the equations that δ has to satisfy:
the homogenous PDE as well as homogenous boundary and initial conditions.
If you go back to your notes, you will see that it wasn’t particularly hard to
derive that δ = 0 by multiplying the PDE for δ, integrating over time and
space, and integrating by parts where necessary to arrive at an equation that
had two non-negative terms that added up to zero, and therefore proved that
each term had to be zero. Thus we have δ = 0 which implies u1 = u2, which in
non-mathematical language reads that every two solutions of the heat equation
are equal, or in other words that there is exactly one unique solution.

For the Laplace equation we have shown existence of solutions in class. Prove
uniqueness by following the same recipe: assume that there are two solutions
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u1, u2 of

−∆u = 0 in Ω,

u = g on ∂Ω,

introduce the difference δ = u1 − u2, derive the equation and boundary condi-
tions δ has to satisfy, then multiply the PDE for δ by δ itself, integrate, and
integrate by parts. Show that this implies that δ = 0, i.e. u1 = u2. (5 points)

Problem 4 (Laplacian in a polar coordinate system.) We can identify
each point in the plane by specifying its x and y coordinates. Alternatively, we
can state its distance r from the origin as well as the angle θ the vector from
the origin to the point forms with the positive x-axis. These two coordinate
systems are related by

r =
√

x2 + y2, θ = arctan
y

x
.

If we are given a function F (r, θ) = F (r(x, y), θ(x, y)), we can compute
derivatives with respect to each set of coordinates using the chain rule:

∂F (r(x, y), θ(x, y))
∂x

=
∂F (r, θ)

∂r

∂r

∂x
+

∂F (r, θ)
∂θ

∂θ

∂x
,

and similarly for ∂
∂y F (r(x, y), θ(x, y)).

Show that the following identity holds:

∆F (r(x, y), θ(x, y)) =
1
r

∂

∂r

(
r

∂

∂r
F (r, θ)

)
+

1
r2

∂2

∂θ2
F (r, θ).

Here,

∆F (r(x, y), θ(x, y)) =
∂2F (r(x, y), θ(x, y))

∂x2
+

∂2F (r(x, y), θ(x, y))
∂y2

.

The calculations that lead to this result are a bit tedious and lengthy, but since
you know the answer you should be able to find a way by simply applying the
chain rule often enough and suitably simplifying terms. (5 points)
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