
MATH 412: Theory of Partial
Differential Equations

Lecturer: Prof. Wolfgang Bangerth
Blocker Bldg., Room 507D
(979) 845 6393
bangerth@math.tamu.edu
http://www.math.tamu.edu/~bangerth

Homework assignment 1 – due Thursday 9/6/2007

Problem 1 (Bivariate analysis). Here is a picture of the large radio tele-
scope in Arecibo, Puerto Rico:

Impose a coordinate system with the origin at the center of the dish and such
that the positive x-axis runs from the origin in the direction of the tower in
front. Let Ω be the domain in x-y-space occupied by the dish. Let H(x, y) be
the height of the telescope’s surface above the level defined by the circular rim
(the surface is of course below the rim, so H(x, y) ≤ 0).

a) Plot the coordinate system (i.e. x- and y-axes) into the picture. Indicate
H(0, 0).

b) Describe in words the meaning of the following quantities defined on the
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entire domain and state the sign of the quantities on the second line:

∂H(x, y)
∂x

∂H(x, y)
∂y

∇H(x, y)

∂2H(x, y)
∂x2

∂2H(x, y)
∂y2

∆H(x, y)∫
Ω

H(x, y) dx dy

∫ R

−R

H(x, 0) dx ∇H(0, 0)

c) Describe in words the meaning of the following quantities defined on the
boundary of the domain and state the sign of quantities where possible:

n
∂H(x, y)

∂n
= n · ∇∂H(x, y)

∂2H(x, y)
∂n2∫

∂Ω

H(x, y) ds

∫
∂Ω

∂H(x, y)
∂n

ds

(5 points)

Problem 2 (Integration by parts 1). Calculate the following integrals
using integration by parts:

a)
∫ π

0
x sinx dx

b)
∫ 1

0
xex dx

c)
∫ 1

0
x3ex dx

(3 points)

Problem 3 (Integration by parts 2). Using one of the remarkable identities
linking the fundamental constants e and π, namely

∫∞
−∞ e−x2

dx =
√

π, you show
that the second moment of the Gaussian bell curve satisfies∫ ∞

−∞
x2e−x2

dx =
1
2
√

π.

(Hint: in the integration by parts formula
∫

u′v dx = −
∫

uv′ dx+boundary terms,
where u′(x)v(x) = x2e−x2

, you may want to identify u′(x) = −2xe−x2
, v(x) =

− 1
2x and proceed from there.)
Also show that the first moment of the Gaussian bell curve is zero, i.e.∫ ∞

−∞
xe−x2

dx = 0.

(3 points)
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Problem 4 (Integration by parts 3). Let f(x, y) = x2 + y2 and g(x, y) =
sin(xy). State which of the following statements is true and why or why not:

a)
∫ π

−π
f(x, 0)g(x, 0) dx = 0

b) for every y there holds∫ 1

−1

∂f(x, y)
∂x

g(x, y) dx

= −
∫ 1

−1

∂g(x, y)
∂x

f(x, y) dx + f(1, y)g(1, y)− f(−1, y)g(−1, y)

c) for every y there holds (note the signs)∫ 1

−1

∂f(x, y)
∂x

g(x, y) dx

= +
∫ 1

−1

∂g(x, y)
∂x

f(x, y) dx− f(1, y)g(1, y) + f(−1, y)g(−1, y)

d) for every x there holds∫ 1

−1

∂f(x, y)
∂x

g(x, y) dy

= −
∫ 1

−1

∂g(x, y)
∂x

f(x, y) dy + f(x, 1)g(x, 1)− f(x,−1)g(x,−1)

(4 points)

Problem 5 (Divergence theorem). For the simple case of the unit square
Ω = [0, 1]2, show that the divergence theorem∫

Ω

div u dx dy =
∫

∂Ω

n · u dl

holds for all sufficiently smooth vector fields u. Hint: Use that the integral over
Ω is really an integral over 0 ≤ x, y ≤ 1 and that in the surface integral on the
right you can express the normal vector explicitly on each part of the boundary.

(3 points)
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