MATH 412: Theory of Partial Differential Equations

Lecturer: Prof. Wolfgang Bangerth
Blocker Bldg., Room 507D
(979) 8456393
bangerth@math.tamu.edu
http://www.math.tamu.edu/~bangerth

Homework assignment 1 - due Thursday 9/6/2007

Problem 1 (Bivariate analysis). Here is a picture of the large radio telescope in Arecibo, Puerto Rico:

Impose a coordinate system with the origin at the center of the dish and such that the positive x-axis runs from the origin in the direction of the tower in front. Let Ω be the domain in $x-y$-space occupied by the dish. Let $H(x, y)$ be the height of the telescope's surface above the level defined by the circular rim (the surface is of course below the rim, so $H(x, y) \leq 0$).
a) Plot the coordinate system (i.e. x - and y-axes) into the picture. Indicate $H(0,0)$.
b) Describe in words the meaning of the following quantities defined on the
entire domain and state the sign of the quantities on the second line:

$$
\begin{array}{lrl}
\frac{\partial H(x, y)}{\partial x} & \frac{\partial H(x, y)}{\partial y} & \nabla H(x, y) \\
\frac{\partial^{2} H(x, y)}{\partial x^{2}} & \frac{\partial^{2} H(x, y)}{\partial y^{2}} & \Delta H(x, y) \\
\int_{\Omega} H(x, y) d x d y & \int_{-R}^{R} H(x, 0) d x & \nabla H(0,0)
\end{array}
$$

c) Describe in words the meaning of the following quantities defined on the boundary of the domain and state the sign of quantities where possible:

$$
\begin{array}{lll}
\mathbf{n} & \frac{\partial H(x, y)}{\partial n}=\mathbf{n} \cdot \nabla \partial H(x, y) & \frac{\partial^{2} H(x, y)}{\partial n^{2}} \\
\int_{\partial \Omega} H(x, y) d s & \int_{\partial \Omega} \frac{\partial H(x, y)}{\partial n} d s
\end{array}
$$

Problem 2 (Integration by parts 1). Calculate the following integrals using integration by parts:
a) $\int_{0}^{\pi} x \sin x d x$
b) $\int_{0}^{1} x e^{x} d x$
c) $\int_{0}^{1} x^{3} e^{x} d x$

Problem 3 (Integration by parts 2). Using one of the remarkable identities linking the fundamental constants e and π, namely $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$, you show that the second moment of the Gaussian bell curve satisfies

$$
\int_{-\infty}^{\infty} x^{2} e^{-x^{2}} d x=\frac{1}{2} \sqrt{\pi}
$$

(Hint: in the integration by parts formula $\int u^{\prime} v d x=-\int u v^{\prime} d x+$ boundary terms, where $u^{\prime}(x) v(x)=x^{2} e^{-x^{2}}$, you may want to identify $u^{\prime}(x)=-2 x e^{-x^{2}}, v(x)=$ $-\frac{1}{2} x$ and proceed from there.)

Also show that the first moment of the Gaussian bell curve is zero, i.e.

$$
\int_{-\infty}^{\infty} x e^{-x^{2}} d x=0
$$

(3 points)

Problem 4 (Integration by parts 3). Let $f(x, y)=x^{2}+y^{2}$ and $g(x, y)=$ $\sin (x y)$. State which of the following statements is true and why or why not:
a) $\int_{-\pi}^{\pi} f(x, 0) g(x, 0) d x=0$
b) for every y there holds

$$
\begin{aligned}
& \int_{-1}^{1} \frac{\partial f(x, y)}{\partial x} g(x, y) d x \\
& \quad=-\int_{-1}^{1} \frac{\partial g(x, y)}{\partial x} f(x, y) d x+f(1, y) g(1, y)-f(-1, y) g(-1, y)
\end{aligned}
$$

c) for every y there holds (note the signs)

$$
\begin{aligned}
& \int_{-1}^{1} \frac{\partial f(x, y)}{\partial x} g(x, y) d x \\
& \quad=+\int_{-1}^{1} \frac{\partial g(x, y)}{\partial x} f(x, y) d x-f(1, y) g(1, y)+f(-1, y) g(-1, y)
\end{aligned}
$$

d) for every x there holds

$$
\begin{aligned}
& \int_{-1}^{1} \frac{\partial f(x, y)}{\partial x} g(x, y) d y \\
& \quad=-\int_{-1}^{1} \frac{\partial g(x, y)}{\partial x} f(x, y) d y+f(x, 1) g(x, 1)-f(x,-1) g(x,-1)
\end{aligned}
$$

(4 points)
Problem 5 (Divergence theorem). For the simple case of the unit square $\Omega=[0,1]^{2}$, show that the divergence theorem

$$
\int_{\Omega} \operatorname{div} \mathbf{u} d x d y=\int_{\partial \Omega} \mathbf{n} \cdot \mathbf{u} d l
$$

holds for all sufficiently smooth vector fields \mathbf{u}. Hint: Use that the integral over Ω is really an integral over $0 \leq x, y \leq 1$ and that in the surface integral on the right you can express the normal vector explicitly on each part of the boundary.
(3 points)

