MATH 417: Numerical Analysis

Instructors: Prof. Wolfgang Bangerth, Prof. Guido Kanschat bangerth@math.tamu.edu,
kanschat@math.tamu.edu
Teaching Assistants: Seungil Kim, Yan Li
sgkim@math.tamu.edu, yli@math.tamu.edu

Homework assignment 9 - due 11/9/06 and 11/13/06

Problem 1 (Lagrange interpolation). For the data set $x_{i}=\{1,2,3,4,5\}$, $y_{i}=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}\right\}$, compute the Lagrange interpolation polynomial. Plot this polynomial together with the function $f(x)=\frac{1}{x}$ and describe where the interpolating polynomial is a reasonable approximation of $f(x)$.
(3 points)
Problem 2 (Lagrange interpolation of higher order). For each of the values $N=1,2,4,6,8,12,20$, compute the polynomial $p_{2 N}(x)$ of order $2 N$ such that

- $p_{2 N}(0)=1$,
- $p_{2 N}\left(\pm \frac{j}{N}\right)=0$ for $j=1, \ldots, N$.

Plot these polynomials in the interval $-1 \leq x \leq 1$. What happens as N becomes larger? (Hint: You will want to compute the polynomials with a computer algebra system or a self-written program, since computing polynomials of degree 40 on paper becomes tedious. You can make your life a lot easier by only computing those polynomials that you actually need.)
(6 points)

Problem 3 (Non-equidistant Lagrange interpolation). Modify your program for Problem 2 to solve the interpolation problem

- $p_{2 N}(0)=1$,
- $p_{2 N}\left(\sin \left(\pm \frac{\pi j}{2 N}\right)\right)=0$ for $j=1, \ldots, N$
for all values of N in problem 2. Note that the interpolation points $\sin \left(\pm \frac{\pi j}{2 N}\right)$ are between -1 and 1 as before, but are now no longer equidistantly spaced.
(3 points)

Problem 4 (Numerical differentiation). In class, the symmetric second difference quotient

$$
f^{\prime \prime}(x) \approx \frac{f(x-h)-2 f(x)+f(x+h)}{h^{2}}
$$

was introduced. Here, we want to study its properties.
(a) Compute the quadratic Lagrange interpolation polynomial $p_{2}(x)$ that interpolates f in the points $x-h, x$ and $x+h$ and show that the formula is the second derivative $L^{\prime \prime}(x)$ of this polynomial.
(b) Show that the formula is exact for all polynomials of degree at most 3 (Hint: show this for the monomials $x^{k}, k=0,1,2,3$ and explain why this is sufficient).
(c) Use the Taylor polynomial of degree 3 for f around the point x and its remainder term to show that

$$
f^{\prime \prime}(x)-\frac{f(x-h)-2 f(x)+f(x+h)}{h^{2}}=-\frac{h^{2}}{12} f(4)(\xi)
$$

for some $\xi \in(x-h, x+h)$.
(6 points)

