MATH 417: Numerical Analysis

Instructors:	Prof. Wolfgang Bangerth, Prof. Guido Kanschat
	bangerth@math.tamu.edu,
	kanschat@math.tamu.edu
Teaching Assistants:	Seungil Kim, Yan Li sgkim@math.tamu.edu, vli@math.tamu.edu
	J I Omaon , oama , oaa

Homework assignment 9 - due 11/9/06 and 11/13/06

Problem 1 (Lagrange interpolation). For the data set $x_i = \{1, 2, 3, 4, 5\}$, $y_i = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}\}$, compute the Lagrange interpolation polynomial. Plot this polynomial together with the function $f(x) = \frac{1}{x}$ and describe where the interpolating polynomial is a reasonable approximation of f(x).

(3 points)

Problem 2 (Lagrange interpolation of higher order). For each of the values N = 1, 2, 4, 6, 8, 12, 20, compute the polynomial $p_{2N}(x)$ of order 2N such that

- $p_{2N}(0) = 1$,
- $p_{2N}(\pm \frac{j}{N}) = 0$ for $j = 1, \dots, N$.

Plot these polynomials in the interval $-1 \le x \le 1$. What happens as N becomes larger? (Hint: You will want to compute the polynomials with a computer algebra system or a self-written program, since computing polynomials of degree 40 on paper becomes tedious. You can make your life a lot easier by only computing those polynomials that you actually need.) (6 points)

Problem 3 (Non-equidistant Lagrange interpolation). Modify your program for Problem 2 to solve the interpolation problem

- $p_{2N}(0) = 1$,
- $p_{2N}\left(\sin\left(\pm\frac{\pi j}{2N}\right)\right) = 0$ for $j = 1, \dots, N$

for all values of N in problem 2. Note that the interpolation points $\sin\left(\pm\frac{\pi j}{2N}\right)$ are between -1 and 1 as before, but are now no longer equidistantly spaced. (3 points) **Problem 4 (Numerical differentiation).** In class, the symmetric second difference quotient

$$f''(x) \approx \frac{f(x-h) - 2f(x) + f(x+h)}{h^2}$$

was introduced. Here, we want to study its properties.

- (a) Compute the quadratic Lagrange interpolation polynomial $p_2(x)$ that interpolates f in the points x h, x and x + h and show that the formula is the second derivative L''(x) of this polynomial.
- (b) Show that the formula is exact for all polynomials of degree at most 3 (Hint: show this for the monomials x^k , k = 0, 1, 2, 3 and explain why this is sufficient).
- (c) Use the Taylor polynomial of degree 3 for f around the point x and its remainder term to show that

$$f''(x) - \frac{f(x-h) - 2f(x) + f(x+h)}{h^2} = -\frac{h^2}{12}f(4)(\xi)$$

for some $\xi \in (x - h, x + h)$.