MATH 417: Numerical Analysis

Instructors:	Prof. Wolfgang Bangerth, Prof. Guido Kanschat
	bangerth@math.tamu.edu,
	kanschat@math.tamu.edu
Teaching Assistants:	Seungil Kim, Yan Li sgkim@math.tamu.edu,
	yrremath.tamu.euu

Homework assignment $8 - due \frac{11}{2}/06$ and $\frac{11}{6}/06$

Problem 1 (Condition numbers). Calculate the condition numbers $\kappa(A) = ||A|| ||A^{-1}||$ with respect to the l_1, l_{∞} and l_2 norms for the matrix

$$A = \begin{pmatrix} 1 & 1.001 \\ 0.999 & 1 \end{pmatrix}.$$

(5 points)

Problem 2 (Error propagation). With the matrix from Problem 1, consider the solutions x, \tilde{x} of the following linear systems:

Ax = b,	$b = \begin{pmatrix} 1 \\ 1 \end{pmatrix},$
$A\tilde{x} = \tilde{b},$	$\tilde{b} = \begin{pmatrix} 1\\ 1.001 \end{pmatrix}$

(Imagine the former to be the exact right hand side, and the latter to be one that is contaminated by measurement uncertainty, statistical error, etc.)

Solve for x and \tilde{x} . Calculate the relative difference in the right hand side $\epsilon_r = \|b - \tilde{b}\| / \|b\|$ and the relative error $e_r = \|x - \tilde{x}\| / \|x\|$ in the solution, each for both the l_2 and the l_{∞} norm.

Using your result from Problem 1, do ϵ_r and e_r satisfy the estimates discussed in class? (5 points)

Problem 3 (Lagrange interpolation).

- (a) Compute the Lagrange interpolation polynomials $L_{4,k}$, k = 0...3, for the points $x_0 = 1$, $x_1 = 2$, $x_2 = 1.5$ and $x_3 = 1.6$.
- (b) Calculate the interpolating polynomial for the data set where $y_k = \log x_k$ at the four points x_k . Write the polynomial in the form $a_3x^3 + a_2x^2 + a_1x + a_0$.
- (c) The polynomial calculated in (b) by construction interpolates the function $f(x) = \log x$. Compute the maximal error on the interval [1, 2].

(6 points)