MATH 417: Numerical Analysis

Instructors:

Prof. Wolfgang Bangerth, Prof. Guido Kanschat bangerth@math.tamu.edu, kanschat@math.tamu.edu
sgkim@math.tamu.edu, yli@math.tamu.edu

Teaching Assistants: Seungil Kim, Yan Li

Homework assignment 8 - due 11/2/06 and 11/6/06

Problem 1 (Condition numbers). Calculate the condition numbers $\kappa(A)=$ $\|A\|\left\|A^{-1}\right\|$ with respect to the l_{1}, l_{∞} and l_{2} norms for the matrix

$$
A=\left(\begin{array}{cc}
1 & 1.001 \\
0.999 & 1
\end{array}\right)
$$

(5 points)
Problem 2 (Error propagation). With the matrix from Problem 1, consider the solutions x, \tilde{x} of the following linear systems:

$$
\begin{array}{ll}
A x=b, & b=\binom{1}{1}, \\
A \tilde{x}=\tilde{b}, & \tilde{b}=\binom{1}{1.001} .
\end{array}
$$

(Imagine the former to be the exact right hand side, and the latter to be one that is contaminated by measurement uncertainty, statistical error, etc.)

Solve for x and \tilde{x}. Calculate the relative difference in the right hand side $\epsilon_{r}=\|b-\tilde{b}\| /\|b\|$ and the relative error $e_{r}=\|x-\tilde{x}\| /\|x\|$ in the solution, each for both the l_{2} and the l_{∞} norm.

Using your result from Problem 1, do ϵ_{r} and e_{r} satisfy the estimates discussed in class?
(5 points)

Problem 3 (Lagrange interpolation).

(a) Compute the Lagrange interpolation polynomials $L_{4, k}, k=0 \ldots 3$, for the points $x_{0}=1, x_{1}=2, x_{2}=1.5$ and $x_{3}=1.6$.
(b) Calculate the interpolating polynomial for the data set where $y_{k}=\log x_{k}$ at the four points x_{k}. Write the polynomial in the form $a_{3} x^{3}+a_{2} x^{2}+$ $a_{1} x+a_{0}$.
(c) The polynomial calculated in (b) by construction interpolates the function $f(x)=\log x$. Compute the maximal error on the interval $[1,2]$.

