MATH 417: Numerical Analysis

Instructors:	Prof. Wolfgang Bangerth, Prof. Guido Kanschat bangerth@math.tamu.edu, kanschat@math.tamu.edu
Teaching Assistants:	Seungil Kim, Yan Li sgkim@math.tamu.edu, yli@math.tamu.edu

Homework assignment 7 - due 10/26/06 and 10/30/06

Problem 1 (Jacobi iteration). Solve problems 7.3.1 a) and b) of the book (using paper and pencil).

Problem 2 (Gauss-Seidel iteration). Solve problems 7.3.3 of the book (using paper and pencil) for parts a) and b).
(3 points)
Problem 3 (Convergence of Richardson iteration). Richardson iteration is another variant of the methods presented. It can be written in the form

$$
x^{k+1}=x^{k}-\omega\left(A x^{k}-b\right),
$$

where $\omega>0$ is called the damping factor. Follow these steps to prove that this method yields a contraction with respect to the norm $\|.\|_{2}$ if A is a symmetric positive definite matrix and $0<\omega<1 / \lambda_{\max }$, where $\lambda_{\max }$ is the largest eigenvalue of A.
a) State what the operator $T=\mathbf{1}-B A$ of the iteration is, by identifying what B is for the iteration above.
b) Rewrite the product $T x$ in terms of the eigenvalues and eigenvectors of A.
c) Use this decomposition to estimate the spectral radius $\rho\left(T^{T} T\right)$.
c) Draw your conclusions concerning the contraction property of T, i.e. show whether or not $\|T\|_{2}=\|\mathbf{1}-B A\|_{2}<1$ for the given choice of ω.

Problem 4 (Gauss-Seidel iteration). Repeat Problem 3 of Homework 6 (the Jacobi iteration), but use the Gauss-Seidel iteration instead to compute the vectors $x^{(k)}$. Generate the same plots as before. Compare your results with the previous results.
(4 points)

