MATH 417: Numerical Analysis

Instructors:	Prof. Wolfgang Bangerth, Prof. Guido Kanschat
	bangerth@math.tamu.edu,
	kanschat@math.tamu.edu
Teaching Assistants:	Seungil Kim, Yan Li
	sgkim@math.tamu.edu,
	yli@math.tamu.edu

Homework assignment 7 - due 10/26/06 and 10/30/06

Problem 1 (Jacobi iteration).Solve problems 7.3.1 a) and b) of the book(using paper and pencil).(3 points)

Problem 2 (Gauss-Seidel iteration). Solve problems 7.3.3 of the book (using paper and pencil) for parts a) and b). (3 points)

Problem 3 (Convergence of Richardson iteration). Richardson iteration is another variant of the methods presented. It can be written in the form

$$x^{k+1} = x^k - \omega \left(Ax^k - b\right),$$

where $\omega > 0$ is called the damping factor. Follow these steps to prove that this method yields a contraction with respect to the norm $\|.\|_2$ if A is a symmetric positive definite matrix and $0 < \omega < 1/\lambda_{\text{max}}$, where λ_{max} is the largest eigenvalue of A.

- a) State what the operator $T = \mathbf{1} BA$ of the iteration is, by identifying what B is for the iteration above.
- b) Rewrite the product Tx in terms of the eigenvalues and eigenvectors of A.
- c) Use this decomposition to estimate the spectral radius $\rho(T^T T)$.
- c) Draw your conclusions concerning the contraction property of T, i.e. show whether or not $||T||_2 = ||\mathbf{1} BA||_2 < 1$ for the given choice of ω .

(4 points)

Problem 4 (Gauss-Seidel iteration). Repeat Problem 3 of Homework 6 (the Jacobi iteration), but use the Gauss-Seidel iteration instead to compute the vectors $x^{(k)}$. Generate the same plots as before. Compare your results with the previous results. (4 points)