MATH 417: Numerical Analysis

Instructors: Prof. Wolfgang Bangerth, Prof. Guido Kanschat

bangerth@math.tamu.edu, kanschat@math.tamu.edu

Teaching Assistants: Seungil Kim, Yan Li

sgkim@math.tamu.edu, yli@math.tamu.edu

Homework assignment 6 - due 10/12/06 and 10/16/06

Problem 1 (Vector and matrix norms). Solve problems 7.1/1 and 7.1/4. (4 points)

Problem 2 (Equivalence of norms on \mathbb{R}^n). In class, we proved the equivalence of the norms $\|.\|_{\infty}$ and $\|.\|_{2}$. Here now, prove the same for $\|.\|_{\infty}$ and $\|.\|_{1}$, where

$$||x||_1 = \sum_{i=1}^n |x_i|.$$

a) Prove that there are indeed constants c, C such that

$$c||v||_{\infty} \le ||v||_1 \le C||v||_{\infty}.$$

where

$$||v||_1 = \sum_i |v_i|,$$

$$||v||_{\infty} = \max_i |v_i|,$$

and where v is an n-dimensional vector in \mathbb{R}^n .

b) For vectors v_1, v_2 with $||v_1||_1 \le ||v_2||_1$, does the result of part a) imply that $||v_1||_{\infty} \le ||v_2||_{\infty}$? If not, give an example of vectors for which this does not follow. (4 points)

Problem 3 (Jacobi iteration). Let A, b be the 100×100 matrix and 100-dimensional vector defined by

$$A_{ij} = \begin{cases} 2.01 & \text{if } i = j, \\ -1 & \text{if } i = j \pm 1, \\ 0 & \text{otherwise,} \end{cases} \qquad b_i = \frac{1}{100} \sin\left(\frac{2\pi i}{50}\right).$$

Apply Jacobi's method to solving Ax = b. Write a program that implements the Jacobi method and start with a vector x_0 with randomly chosen elements

in the range $0 \le (x_0)_i \le 1$ (i.e. with elements generated from what the rand() function or a similar replacement returns).

(Hint: It is not necessary to actually store the complete matrix just to multiply with it. Rather, use that the *i*-th component of the vector Ay is $(Ay)_i = \sum_{j=1}^n A_{ij}y_j = 2.01y_i - y_{i-1} - y_{i+1}$ at least for $2 \le i \le n-1$, and obvious modifications for j=1 and j=n.)

Run 200 Jacobi iterations and plot the values of $(x^{(k)})_i$ against *i* for every few iterations, for example k = 0, 2, 5, 10, 20, 50, 100, 200. What do you observe?

(5 points)

Problem 4 (Alternative vector norms). Let A be a symmetric and positive definite $n \times n$ matrix. Show that

$$||x||_A = \sqrt{x^T A x}$$

is a norm for vectors $x \in \mathbb{R}^n$. (Hint: Use the eigenvalue and eigenvector decomposition of symmetric positive definite matrices.)

(3 points)