MATH 417: Numerical Analysis

Instructors:
Teaching Assistants: Seungil Kim, Yan Li
sgkim@math.tamu.edu, yli@math.tamu.edu

Homework assignment 5 - due 10/5/06 and 10/9/06

Problem 1 (Positive definite matrices). Positive definite matrices are those matrices for which $x^{T} A x>0$ for all vectors x. These matrices play an important role in many applications of engineering and physics. Let us consider one of their properties.

Any matrix A can be written as $A=A^{s}+A^{a}$, where the symmetric part A^{s} and the skew-symmetric part A^{a} of a matrix are defined as

$$
A^{s}=\frac{A+A^{T}}{2}, \quad A^{a}=\frac{A-A^{T}}{2} .
$$

Show that A being positive definite is equivalent to A^{s} being positive definite.

Problem 2 (LU decomposition). Solve the linear system $A x=b$ with the Hilbert matrix system we already saw last week:

$$
A=\left(\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7}
\end{array}\right), \quad b=\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right) .
$$

by applying the following steps with paper and pencil:
(a) Compute the LU decomposition of A and write down the elimination steps.
(b) Use forward and backward substitution to obtain the solution x.

Problem 3 (LU decomposition). Write a program that implements the LU decomposition algorithm for general $n \times n$ matrices and outputs the L and U factors. Apply it to the matrix of Problem 2.

In a second step, implement the backward and forward substitution solves with the upper and lower triangular factors L and U for any given vector. Apply it to the given right hand side of Problem 2.

Problem 4 (Norms on \mathbb{R}^{n}). In the analysis of iterative solution methods for linear systems, we will come across different vector norms. A functional $\|\cdot\|: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called a norm if it satisfies the following three conditions:
(a) $\|x\| \geq 0$ for all vectors $x \in \mathbb{R}^{n}$ and $\|x\|=0$ if and only if $x=0$ (positive definiteness);
(b) $\|\lambda x\|=|\lambda|\|x\|$ for all $\lambda \in \mathbb{R}$ and all vectors $x \in \mathbb{R}^{n}$ (scalability);
(c) $\|x+y\| \leq\|x\|+\|y\|$ for all vectors $x, y \in \mathbb{R}^{n}$ (triangle inequality).

Determine which of the following are norms on \mathbb{R}^{n} by proving or disproving that they satisfy the three conditions above:
a) $\max _{1 \leq 1 \leq n}\left|x_{i}\right|$
b) $\max _{2 \leq 1 \leq n}\left|x_{i}\right|$
c) $\sum_{i=1}^{n}\left|x_{i}\right|^{3}$
d) $\left(\sum_{i=1}^{n}\left|x_{i}\right|^{1 / 2}\right)^{2}$
e) $\max \left\{\left|x_{1}-x_{2}\right|,\left|x_{1}+x_{2}\right|,\left|x_{3}\right|,\left|x_{4}\right|, \ldots,\left|x_{n}\right|\right\}$
f) $\sum_{i=1}^{n} 2^{-i}\left|x_{i}\right|$

